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ABSTRACT

Cloud infrastructure continues to scale due to rapid evolvement of both hardware and software
technologies in recent years. On the one hand, recent hardware advancement such as accelerators,
kernel-bypass networks, and high-speed interconnect brings more powerful computing devices,
faster networking equipment, and larger data storage. On the other hand, new software technolo-
gies such as computer vision and natural language processing introduce more workloads across
datacenters and the edge. As a result, more and more applications from many tenants with different
performance requirements must share the compute and network resources to improve resource
utilization. Therefore, it is more important than ever to ensure performance-critical applications
receive the appropriate level of priority and service quality.

This dissertation aims to build system support for better quality of service (QoS) for performance-
critical applications in the cloud. Specifically, we aim to provide guaranteed performance specified
by service level objectives (SLOs) for multiple coexisting applications while maximizing system
resource utilization. Unfortunately, we observe that existing cloud infrastructure lacks QoS support
in multiple critical places including network interface cards (NICs), datacenter fabrics, edge devices
and tiered memory systems, each of which requires unique QoS-aware system design to ensure
predictable application performance.

To this end, we have built software solutions to provide better QoS in each of the aforemen-
tioned areas. First, we built Justitia to provide performance isolation and fairness in the NIC for
kernel-bypass networks (KBNs). Justitia overcomes the unique challenges in KBN with several in-
novations, including split connections with message-level shaping, sender-based resource mediation
with receiver-side updates, and passive latency monitoring. Second, we built Aequitas to provide
QoS for latency-critical remote procedure calls (RPCs) inside datacenter networks. Aequitas is a
distributed sender-driven admission control scheme that uses commodity Weighted-Fair Queuing
(WFQ) to guarantee RPC-level SLOs. It enforces cluster-wide RPC latency SLOs via probabilistic
downgrading in order to limit the amount of traffic admitted into different QoS levels. Third, we
built Vulcan to automatically generate query plans for live ML queries based on their accuracy and
end-to-end latency requirements, while minimizing resource consumption across the edge. Vulcan
determines the best pipeline, placement, and query configuration by combining several techniques
including Bayesian Optimization and memorizing intermediate results of pipeline operators. Fi-
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nally, we built Mercury, a QoS-aware tiered memory system to provide predictable performance for
memory-intensive applications. Mercury proposes a new resource management scheme inside the
kernel tailored for tiered memory systems. It leverages a novel admission control and a real-time
adaptation algorithm to ensure QoS guarantees for both latency-sensitive and bandwidth-intensive
applications. Together, these solutions provide the missing pieces from the edge to the cloud to
enable QoS for performance-critical cloud applications.
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CHAPTER 1

Introduction

Due to the rapid evolution of hardware technologies, the scale of cloud infrastructure continues
to grow. CPUs and GPUs are getting faster and more power efficient every year to handle the
most complicated computation. Meanwhile, new breakthrough in high-speed interconnect (e.g.,
CXL) [15] has provided higher memory capacity with lower cost, allowing more workloads to be
deployed in the cloud. Moreover, recent development of kernel-bypass networks [237, 92, 150]
and 5G technologies [8, 7, 12] has brought faster networks, which has become the key enabler for
compute and memory disaggregation, allowing cloud infrastructure to scale with higher resource
utilization.

At the same time, recent advancement in software has brought many applications with diverse
performance characteristics to the cloud. For example, as shown in Figure 1.1 in-memory key-
value stores [18, 17] are widely used in user-facing microservices and they require their latency
performance to be within tens of 𝜇s. Database systems leveraging persistent memory [1, 170]
have less stringent latency requirement but can still achieve sub-𝑚s performance. On the other
hand, distributed storage [73], autonomous driving perception [196, 227, 228], and AI inference
tasks [213, 163] perform well in the𝑚s-scale, but they each have their own performance requirement
in order to deliver proper service. On the other side of the spectrum, we have machine learning
training, which can take days or even months depending on the size of the model and available
compute resource.

Although modern cloud infrastructure has grown to accommodate more applications with in-
creasing demands, applications have to share cloud resource, such as network and compute, in order
to achieve high overall resource utilization in the cloud. To deploy multiple applications, cloud
infrastructure has to over-subscribe resources for statistical multiplexing as it would otherwise be
too expensive to provision. This makes resource contention inevitable when multiple applications
surge in their demands. As a result, critical applications’ performance becomes unpredictable
or even unavailable when contention is high. On the contrary, low-priority applications without
stringent performance requirements still compete for resource, with a chance of obtaining higher
service quality than critical applications, causing priority inversion.
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Figure 1.1: Various cloud applications with different performance characteristics.

This dissertation aims to build system support for better quality of service (QoS) for performance-
critical applications in the cloud. Specifically, our goal is to provide guaranteed performance
specified by service level objectives (SLOs) for multiple coexisting applications while maximize the
system resource utilization. In this dissertation, we identify multiple critical places in existing cloud
infrastructure that lack QoS support, including network interface cards (NICs), datacenter fabric,
edge devices and tiered memory systems, each of which has unique system design challenges to
ensure predictable application performance. To this end, we have built a QoS-aware system for each
of the aforementioned areas, and show that it is possible to achieve both predictable performance
and high resource utilization in cloud infrastructure.

We now continue this chapter with background knowledge on how existing cloud infrastructure
lack QoS support, followed by the thesis statement and our research contribution.

1.1 Lack of QoS Support in Cloud Infrastructure

Existing system design in cloud infrastructure primarily focuses on improving system efficiency.
The state-of-the-art systems proposed in recent research often optimize a single or one type of
applications, with the goal to maximize application performance via high resource utilization.
We now describe why existing systems under such a design philosophy However, such a design
philosophy leads to lack of QoS support in all four research areas this dissertation focuses on:

Network interface cards. NICs are the hardware devices that optimize packet transmission
performance. Hardware-based KBNs, such as Remote Direct Memory Access (RDMA), offload
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packet processing tasks originally done by the operating system (OS) to specialized NICs. This
allows KBNs can achieve ultra low latency and high line rate. However, such offloading takes
away the operator’s control over network sharing policies such as prioritization and performance
isolation. As a result, multiple coexisting applications must rely on the specialized NIC to arbitrate
among data transfer operations once they are posted to the hardware. Since NICs are designed
to maximize utilization for optimal performance, this leads to head-of-line blocking for latency-
sensitive applications, resulting in poor QoS support, as we will soon show in Chapter 2.

Datacenter fabrics. Datacenter networks rely on over-provisioning to maximize network utiliza-
tion, as different applications have various peak times. However, severe network overloads can
occur when multiple applications surge in their demands. During sustained overloads, critical
applications suffer from latency peaks and can no longer maintain their SLO. In fact, no existing
solutions can provide strong SLO guarantees for critical applications running on datacenter fabrics
during high network overloads. Existing congestion control schemes [24, 238, 135, 156, 125]
fair-shares network bandwidth during overloads, causing slowdowns for all application traffic.
Priority-based schemes [25, 160] cannot provide QoS when flow sizes are not aligned with priority,
which is indeed the case in real production environments (Chapter 3). Additionally, bandwidth
sharing schemes [51, 91, 179, 34, 35, 180, 162] do not consider application priorities, nor can they
provide latency guarantees for performance-critical applications.

Edge devices. Live ML analytics have gained increasing demands with large-scale deployments
across edge devices [196, 227, 228, 6, 143, 10, 55]. Serving live ML queries requires ML
pipeline construction, query configuration, and pipeline placement across multiple edge tiers in
a heterogeneous infrastructure based on the query’s accuracy and latency requirement. However,
there exists no systematic approach to automatically construct pipelines based on query’s end-to-
end latency target. Instead, ML expert relies on past deployment experience and construct and place
pipeline components manually. Such an approach overlooks the impact of pipeline construction
and placement on QoS of the queries. Furthermore, recent solutions on query configurations [226,
107, 39, 198, 103], assume the ML analytics component to be a monolithic module instead of
a pipeline, and thus cannot account for the additional latency and resource consumption due to
different placement across the edge infrastructure.

Tiered memory systems. Tiered memory systems [151, 184, 222, 72, 194, 133] have been widely
adopted to replace DRAM-only systems due to increasing memory demands of datacenter appli-
cations. Existing research on tiered memory systems primarily focuses on page temperature moni-
toring and efficient page migration to better utilize local memory resources (i.e., fast-tier DRAM)
[184, 222, 121, 151, 20, 116]. However, these solutions optimize a single application running on
a single server. They are not built with Quality-of-Service (QoS) support and thus cannot react
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to applications with different service level objectives (SLOs). When multiple memory-intensive
applications share the tiered memory, we observe both local memory contention and bandwidth
interference. The former allows low-priority applications to grab more local memory than critical
applications, whereas the latter causes significant performance degradation for latency-sensitive
applications In fact, no existing solutions have systematically tackled bandwidth interference across
tiered memory.

1.2 Thesis Statement and Contributions

Thesis Statement. Existing cloud infrastructure that strives to optimize system performance often
overlooks quality of service (QoS). By building QoS-aware systems in four critical areas of cloud
infrastructure, we show that predictable performance and high resource utilization can be achieved
simultaneously by applying a set of common design principles.

This dissertation describes the design and implementation of the following four major systems,
each of which provides QoS for performance-critical applications in one important area of the cloud
software stack.

Justitia [230]. KBNs optimize application performance by offloading dataplane tasks to NICs,
which lead to performance isolation anomalies when applications coexist. Justitia is the first QoS-
aware system in KBNs to provide a comprehensive QoS support for multiple types of applications.
Its key idea is to introduce an efficient software mediator in front of the NIC that can implement
performance-related multi-tenancy policies, such as fair/weighted resource sharing and predictable
latencies with maximized utilization. To overcome the unique challenges in KBN, we bring several
innovations in Justitia’s design. We propose the concept of split connections to decouple a tenant
application’s intent from its actuation. Justitia combines the benefits of sender-side and receiver-
side design to proactively mediate NIC resources. It also leverages message-level shaping and
passive latency monitoring to ensure latency-sensitive applications can be well isolated in front of
other resource-hungry applications sharing the NIC. Justitia is shown to provide good performance
isolation among several different KBN settings without losing resource utilization or incurring high
CPU usage, and improve real applications’ tail latency by 3.4× during resource contention.

Aequitas [229]. Existing datacenter networks are over-provisioned to maximize network utilization,
leading to severe network overloads that cause QoS violations. We build Aequitas, a distributed
sender-driven admission control scheme to provide SLO guarantees for datacenter remote procedure
calls (RPCs). Aequitas is based on two key design ideas. First, it leverage weighted fair queuing
(WFQ) in commodity switches to provide delay bounds for RPCs in overload situations. Building
on network calculus concepts, we derive through theory and simulations the admissible region
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based on per-QoS worst-case latency with respect to QoS utilization. Second, it explicitly manages
the traffic admitted on a per-QoS basis to guarantee a cluster-wide per-QoS SLO for all but the
lowest QoS traffic. Specifically, Aequitas enforces traffic distribution into different network QoS
levels via probabilistic downgrading in its admission control. Aequitas has been deployed in large-
scale production datacenters and is able to provide SLO guarantees for critical RPCs during severe
network overloads, improving RPC network latency tails by upto 5× across critical QoS levels.

Vulcan [231]. Existing ML analytics systems are not designed to serve system live ML queries,
which requires deploying ML pipelines across multiple edge devices with different compute and
network resource available. Vulcan is an ML analytics system we build to perform automatic query
planning for live ML queries with query accuracy and end-to-end latency SLOs. It overcomes
the huge search space challenge in live ML analytics by combining several key ideas. Vulcan
defines a novel metric to quantify each filtering operator in order to construct the right pipeline
based on a query’s SLOs. It carefully identifies components of ML pipelines that are independent
of placement to significantly improve the efficiency its placement search algorithm. Vulcan also
propose to improve query configuration cost by borrowing ideas from Bayesian optimization.
Additionally, vulcan enables fast online adaptation to ensure QoS is consistently maintained during
runtime dynamics after the query is deployed to the edge. We show that Vulcan manages to provide
QoS support with better performance (by up to 2.8× better) and resource efficiency (by up to 174×
lower) when serving real-world live ML queries compared to state-of-the-art solutions.

Mercury. Recent research on tiered memory systems are not build with QoS support, and cannot
react to applications with different SLO requirements. We introduce Mercury, the first QoS-aware
tiered memory system to provide SLO guarantees for memory-intensive applications. We identify
two sources of performance unpredictability – local memory contention and tier-tier memory
bandwidth interference – that are unique in tiered memory. Mercury develops a new kernel-level
resource management scheme to track and control memory resource for tiered memory. It combines
the benefit of memory profiling and admission control to admit applications with the right amount
of memory resource in order to maximize resource utilization while meeting more applications’
SLO. Mercury also propose an runtime adaptation algorithm to dynamically reallocate resources
during workload changes. Mercury is tested using real-world applications and shows significantly
improved QoS over state-of-the-art solutions with 8.4× longer SLO satisfaction time.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 analyzes performance isolation
anomalies in KBN-specialized NICs and presents Justitia to improve QoS in KBNs. Chapter 3
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introduces why modern datacenter fabrics lack QoS and how we build Aequitas to provide QoS
guarantees for datacenter RPCs. Chapter 4 describes why QoS is overlooked in existing ML
analytics systems and presents Vulcan to provide predictable performance for ML workloads
running across edge tiers. Chapter 5 reveals source of performance unpredictability in tiered
memory systems and discuss how Mercury manages to improve QoS while maximizing utilization
in tiered memory. We conclude this thesis by summarizing common design principles we learned
and discussing future directions in Chapter 6.
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CHAPTER 2

Justitia: Software Multi-Tenancy in Hardware
Kernel-Bypass Networks

We begin our QoS research journey with Justitia, a system we build to provide better QoS in a host
machine’s network interface card (NIC). Compared to traditional datacenter networking, kernel-
bypass networks is more vulnerable to multi-tenancy issues because it bypasses the operating
system during data transfer. In Justitia, we start with a deep analysis on isolation anomalies in
RDMA, followed by a series of key ideas we leveraged to provide better multi-tenancy support
without sacrificing utilization.

The remaining of this chapter is organized as follows. Chapter 2.1 gives the introduction of
Justitia. Chapter 2.2 introduces the background knowledge of data transfer in hardware-based
kernel-bypass networks. Chapter 2.3 describes our findings on performance isolation anomalies
in RDMA. We then describe the design and implementation of Justitia in Chapter 2.4 and Chap-
ter 2.5. Evaluation results are discussed in Chapter 2.6, followed by a discussion of related work
(Chapter 2.7) and a conclusion (Chapter 2.8).

2.1 Introduction

To deal with the growing demands of ultra-low latency with high throughput (message rates) and
high bandwidth in large fan-out services, ranging from parallel lookups in in-memory caches
[111, 69, 113] and resource disaggregation [195, 22, 90] to analytics and machine learning [99,
19, 164], kernel-bypass networking (KBN) is becoming the new norm in modern datacenters
[237, 92, 156, 62, 150]. As the name suggests, with KBN, applications bypass the operating system
(OS) kernel to improve performance while relieving the CPU.

There are two major trends in KBN today. Software-based KBN (e.g., DPDK) removes the
kernel from the data path and performs packet processing in the user space. In contrast, hardware-
based KBN (e.g., RDMA) further lowers latency by at least one order of magnitude and reduces
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Figure 2.1: Design space for multi-tenancy support in KBN.

CPU usage by offloading dataplane tasks to specialized NICs (e.g., RDMA NICs) with on-board
compute.

Hardware KBN, however, takes away the operator’s control over network sharing policies
such as prioritization, isolation, and performance guarantees. Unlike software KBN, coexisting
applications must rely on the specialized NIC to arbitrate among data transfer operations once they
are posted to the hardware. We observe that existing hardware KBNs provide poor support for
multi-tenancy. For example, even for real-world applications such as DARE [178], eRPC [113], and
FaSST [112], sharing the same NIC leads to severe performance anomalies including unpredictable
latency, throttled throughput (i.e., lower message rates), and unfair bandwidth sharing (§2.3). In
this chapter, we aim to address the following question: Can we marry the benefits of software KBN
with the efficiency of hardware KBN and enable fine-grained multi-tenancy support?

Recent works have explored multi-tenancy support in large-scale software-based KBN deploy-
ments [62, 150, 128]. Their designs enforce fine-grained sharing policies such as performance
and security (address space) isolation at the end hosts and pair with fabric-level solutions (e.g.,
congestion control) in case the network fabric becomes a bottleneck (Figure 2.1). However, existing
software KBN solutions cannot be applied to hardware-based KBN due to three unique challenges:
1. Because host CPU is no longer involved, common CPU-based resource allocation mechanism

cannot be applied. Instead, tenants issue RDMA operations with arbitrary data load at no CPU
cost, which leaves no obvious point of control to exert resource mediation.

2. Hardware offloading brings packetization from user space into the NIC, disabling fine-grained
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user-space shaping at the packet level [100, 190].
3. It is also crucial to preserve hardware-based KBN’s efficiency (i.e., single 𝜇s latency and low

CPU cost1) while providing multi-tenancy support.
We present Justitia, a software-only solution that enables multi-tenancy support in hardware-

based KBN, to address the aforementioned challenges (§2.4). Our key idea is to introduce an
efficient software mediator in front of the NIC that can implement performance-related multi-
tenancy policies – including (1) fair/weighted resource sharing and (2) predictable latencies while
maximizing utilization or a mix of the two. Given that RDMA is the primary hardware-based KBN
implementation today, in this chapter, we specifically focus our solutions on RDMA NICs (RNICs).

Enabling fine-grained sharing policies in RDMA requires an efficient way of managing RNIC
resources (i.e., link bandwidth and execution throughput). To this end, we propose Split Connections
that decouple a tenant application’s intent from its actuation and introduces a point of resource
mediation. Justitia mediates RNIC resources by combining the benefits of sender-based and
receiver-based design. RDMA operations are split and paced at the sender side before placing
them onto the RNIC; receiver-side updates are collected to avoid spurious resource allocation
caused by either incast or RDMA READ contention. Shaping is performed at the message level,
where message sizes and their pacing rate are adjusted dynamically based on the current policy
in use. By splitting RDMA connections, Justitia can effectively manage tenants’ connections to
consume RNIC resources based on the policy we set instead of letting tenants themselves compete
by arbitrarily issuing RDMA operations.

To provide predictable latencies for latency-sensitive applications, Justitia introduces the concept
of reference flow and monitors its latency instead of intercepting low-latency tenant applications.
By comparing the latency measurements of many reference flows from the same sender machine to
different receivers, Justitia can quickly detect (local and remote) RNIC resource contention. Given
a tail latency target, Justitia maximizes RNIC resource utilization without violating the target.
When the target is unachievable, based on the operator-defined policy, Justitia can choose to ensure
that each of the competing 𝑛 entities gets at least 1

𝑛
th of one of the RNIC’s two resources, extending

the classic hose model of network sharing [71] to multi-resource RNICs.
We have implemented (§2.5) and evaluated (§2.6) Justitia on both InfiniBand and RoCEv2

networks. It provides multi-tenancy support among different types of applications without incurring
high CPU usage (1 CPU core per host), introducing additional overheads, or modifying application
codes. For example, using Justitia, DARE’s tail latency improves by 3.4× when running in parallel
with Apache Crail [29, 209], a bandwidth-sensitive storage application, and Justitia preserves 81%
of Crail’s original performance. Justitia also complements RDMA congestion control protocols

1This does not apply to applications that aim for low latency or high message rates and busy spin their cores for
maximum performance.
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Figure 2.2: Overview of host-RNIC interaction when posting (i) an RDMA WRITE operation ( 1
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like DCQCN [237] while further mitigating receiver-side RNIC contention, and reduces tail latency
even when the network is congested.

2.2 Background

Recent works [128, 125] have discovered unpredictable latencies due to end-host resource con-
tention, but their primary focus is on receiver-side engine congestion in software-based KBN. In
this work, we aim to emphasize that sender-side resource contention in hardware-based KBN such
as RDMA can also lead to severe performance degradation when multiple tenants coexist. An
ideal solution should address both sender- and receiver-side issues. In this section, we give an
overview on how an RDMA operation is performed, followed by the root cause of RDMA’s lack of
multi-tenancy support.

2.2.1 Life Cycle of an RDMA Operation

RDMA enables direct access between user-registered memory regions without involving the OS
kernel, offloading data transfer tasks to the RNIC. Applications initiate RDMA operations by posting
Work Requests (WRs) via Queue Pairs (QPs) to describe the messages to transmit. Figure 2.2 shows
how an RDMA application interacts with an RNIC to initiate an RDMA operation. To start an
RDMA WRITE, 1 the user application place a Work Queue Element (WQE) describing the
message to the Send Queue (SQ), and 2 rings a door bell to notify the RNIC by writing its QP
number into the corresponding doorbell register on RNIC. At this point, the user application has
completed its task and offloads the rest of the work to RNIC. After the RNIC gets notified, it 3
fetches and processes the requests from the send queue, and 4 pulls the message from the user
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memory, splits it into packets, and sends it to the remote RNIC. Finally, the remote RNIC 5 writes
the received message directly into the remote memory.

In the case of an RDMA READ operation, the user application again posts the WQE and notifies
the RNIC to collect it ( 1 → 3 ). The local RNIC then 4’ notifies the remote RNIC to pull the
data from remote memory, and 5’ places the message back to local memory after de-packetizing
the received packets. Despite the opposite direction of data transfer, the remote OS remains passive
just as the case with an RDMA WRITE. In both cases, the sender of the RDMA operation actively
controls what goes into the RNIC while the remote side stays passively unaware.2

2.2.2 Lack of Multi-Tenancy Support

RDMA lacks multi-tenancy support for two primary reasons: (i) tenants/applications compete for
multiple RNIC resources, and (ii) RNIC processes ready-to-consume message in a greedy fashion
to maximize utilization. Both are related to different symptoms of the isolation issues.

Multi-Resource Contention There exist two primary resources that need to be shared on an
RNIC: link bandwidth and execution throughput. Bandwidth-sensitive applications consume
RNIC’s link bandwidth to issue large DMA requests. Throughput-sensitive applications, on
the other hand, consume RNIC’s execution throughput to issue small DMA requests in batches.
Latency-sensitive applications, however, consume neither resource with the small messages they
sparsely send. As we will soon show (§2.3), isolation anomalies can occur when applications
compete for different resources.

Greedy Processing for High Utilization Although the actual RNIC implementation details are
private, we can consider two hypotheses on how RNIC handles multiple requests simultaneously:
either the RNIC buffers WQEs collected in 3 in Figure 2.2 from multiple applications and arbitrates
among them using some scheduling mechanism; or it processes them in a greedy manner. When a
latency-sensitive application competes with a bandwidth-sensitive application, too much arbitration
in the former can cause low resource utilization (e.g., unable to catch up the line rate), whereas too
little arbitration in the latter leads to head-of-line (HOL) blocking (which leads to latency variation).
Our observations across all three RDMA implementations (§2.3), where applications using small
messages are consistently affected by the ones using larger ones, suggest the latter. Note that even
though receiver-side congestion can also happen during step 5 as pointed out in [128], both root

2This is true even for two-sided operations that require the receiver to post WQEs to its Receive Queue before a
Send Request arrives. We still consider the receiver as passive because it can only control where to place a message
but cannot control when a message will arrive.
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causes can easily stem from the sender side of the operation via step 3 and thus cannot be ignored.
We elaborate on how Justitia mitigates both sender- and receiver-side issues in Section 3.4.

2.3 Performance Isolation Anomalies in RDMA

This section establishes a baseline understanding of sharing characteristics in hardware KBN and
identifies common isolation anomalies across different RDMA implementations with both mi-
crobenchmarks (§2.3.1) and highly optimized, state-of-the-art RDMA-based applications (§2.3.2).

To study RDMA sharing characteristics among applications with different objectives, we con-
sider three major types of RDMA-enabled applications:
1. Latency-Sensitive: Sends small messages and cares about the individual message latencies.
2. Throughput-Sensitive: Sends small messages in batches to maximize the number of messages

sent per second.
3. Bandwidth-Sensitive: Sends large messages with high bandwidth requirements.

Summary of Key Findings:
• Both latency- and throughput-sensitive applications need isolation from bandwidth-sensitive

applications (§2.3.1.1).
• If only latency- or throughput-sensitive applications (or a mix of the two types) compete, they

are isolated from each other (§2.3.1.2).
• Multiple bandwidth-sensitive applications can lead to unfair bandwidth allocations depending

on their message sizes (§2.3.1.3).
• Highly optimized, state-of-the-art RDMA-based systems also suffer from the anomalies we

discovered (§2.3.2).
In the rest of this section, we describe our experimental settings and elaborate on these findings.

2.3.1 Observations From Microbenchmarks

We performed microbenchmarks between two machines with the same type of RNIC, where both
are connected to the same RDMA-enabled switch. For most of the experiments, we used 56 Gbps
Mellanox ConnectX-3 Pro for InfiniBand, 40 Gbps Mellanox ConnectX-4 for RoCEv2, and 40
Gbps Chelsio T62100 for iWARP; 10 and 100 Gbps settings are described similar. More details on
our hardware setups are in Table A.1 of Appendix A.1.

Our benchmarking applications are written based on Mellanox perftest [211] and each of
them uses a single Queue Pair. Unless otherwise specified, latency-sensitive applications in our
microbenchmarks send a continuous stream of 16B messages, throughput-sensitive ones send a
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Figure 2.4: Throughput-sensitive application requires isolation from bandwidth-sensitive applica-
tions.

continuous stream of batches with each batch having 64 16B messages, and bandwidth-sensitive
applications send a continuous stream of 1MB messages. Although all applications send messages
using RDMA WRITEs over reliable connection (RC) QPs in the observations below, other verbs
show similar anomalies as well. We defer the usage and discussion of hardware virtual lanes to
Section 2.6.3.

2.3.1.1 Both Latency- and Throughput-Sensitive Applications Require Isolation

The performance of the latency-sensitive applications deteriorate for all RDMA implementations
(Figure 2.3). Out of the three implementations we benchmarked, InfiniBand and RoCEv2 observes
1.85× and 3.82× degradations in median latency and 2.23× and 4× at the 99th percentile. While
iWARP performs well in terms of median latency, its tail latency degrades dramatically (95×).

Throughput-sensitive applications also suffer. When a background bandwidth-sensitive appli-
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cation is running, the throughput-sensitive ones observe a throughput drop of 2.85× or more across
all RDMA implementations (Figure 2.4). Note that in our microbenchmark with 1 QP per applica-
tion, throughput-sensitive applications that consume NIC execution throughput hit the bottleneck.
This does not imply RNIC always favors link bandwidth over execution throughput. We notice
RNIC bandwidth starts to become the bottleneck when there exists 4× more throughput-sensitive
applications.

More importantly, both latency- and throughput-sensitive applications experience more severe
performance degradations (e.g., 139X worse latency with the presence of 16 bandwidth applica-
tions) as more bandwidth-sensitive applications join the competition, which is prevalent in shared
datacenters [237, 92]. Appendix A.2.1 provides more details.

2.3.1.2 Latency-Sensitive Applications Coexist Well; So Do Throughput-Sensitive Ones

We observe no obvious anomalies among latency- or throughput-sensitive applications, or a mix
of the two types. Detailed results can be found in Appendix A.2.

2.3.1.3 Bandwidth-Sensitive Applications Hurt Each Other

Unlike latency- and throughput-sensitive applications, bandwidth-sensitive applications with dif-
ferent message sizes do affect each other.Figure 2.5 shows that a bandwidth-sensitive application
using 1MB messages receive smaller share than one using 1GB messages. The latter receives
1.42×, 1.22× and 1.51× more bandwidth in InfiniBand, RoCEv2, and iWARP, respectively.
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2.3.1.4 Anomalies are Present in Faster Networks Too

We performed the same benchmarks on 100 Gbps InfiniBand, only to observe that most of the
aforementioned anomalies are still present. Appendix A.3.1 has the details.

2.3.2 Isolation Among Real-World Applications

In this section, we demonstrate how real RDMA-based systems fail to preserve their performance
in the presence of the aforementioned anomalies.

Specifically, we performed experiments with Apache Crail [29, 209] and DARE [178]. Crail is
a bandwidth-hungry distributed data storage system that utilizes RDMA. In contrast, DARE is a
latency-sensitive system that provides high-performance replicated state machines through the use
of a strongly consistent RDMA-based key-value store.

In these experiments, we deployed DARE in a cluster of 4 nodes with 56 Gbps Mellanox
ConnectX-3 Pro NIC on InfiniBand with 64GB memory. Crail is deployed in the same cluster with
one node running the namenode and one other node running the datanode.

To evaluate the performance of Crail, we launch 8 parallel writes (each to a different file) in
Crail’s data storage with the chunk size of the data transfer configured to be 1MB, and we measure
the application-level throughput reported by Crail. To evaluate the performance of DARE, one
DARE client running on the same server as the namenode of Crail issues PUT and GET operations
(each PUT is followed by a GET) to the DARE server on the other 3 nodes with a sweep of message
sizes from 8 byte to 1024 bytes, and we measure the application-level latency reported by DARE.

Figure 2.6 plots the latency of DARE’s queries with and without the presence of Crail. In this
experiment, we observe a 4.6× increase in DARE’s tail latency. Additionally, regardless of whether
it is competing with DARE, Crail’s total write throughput stays at 51.1 Gbps.

Besides DARE, highly-optimized RDMA-based RPC system such as FaSST [112] and eRPC
[113] also suffer from isolation anomalies caused by unmanaged resource contention on RNICs.
In fact, when background bandwidth-heavy traffic is present, FaSST’s throughput experiences a
74% drop (Figure A.7) and eRPC’s tail latency increases by 40× (Figure A.8). More details can be
found in Appendix A.3.2.

2.3.3 Congestion Control is not Sufficient

To demonstrate that DCQCN [237] and PFC are not sufficient to solve these anomalies, we per-
formed the benchmarks again with PFC enabled at both the NICs and switch ports, DCQCN [237]
enabled at the NICs, and ECN markings enabled on a Dell 10 Gbps Ethernet switch (S4048-ON).
In these experiments, latency- and throughput-sensitive applications still suffer unpredictably (Sec-
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tion 2.6.3 has detailed results). This is because DCQCN focuses on fabric-level isolation whereas
the observed anomalies happen at the end host due to RNIC resource contention (§2.2.2).

2.4 Justitia

Justitia enables multi-tenancy in hardware-based KBN, with a specific focus on enabling two
performance-related policies: (1) fair/weighted resource sharing, or (2) predictable latencies while
maximizing utilization, or a mix of the two. Note that we restrict our focus on a cooperative
datacenter environment in this work and defer strategyproofness [84, 83, 179] to mitigate adversar-
ial/malicious behavior to future work.

Granularity of Control: We define a flow to be a stream of RDMA messages between two
RDMA QPs. Justitia can be configured to work either at the flow granularity or at the application
granularity by considering all flows between two applications as a whole.3 In this work, by default,
we set Justitia’s granularity of control to be at the application level to focus on application-level
performance.

2.4.1 Key Design Ideas

Justitia resolves the unique challenges of enabling multi-tenancy in hardware KBN with five key
design ideas.
• Tenant-/application-level connection management: To prevent tenants from hogging RNIC

resources by issuing arbitrarily large messages or creating a large number of active QPs at no
cost, Justitia provides a tenant-level connection management scheme by adding a shim layer
between tenant applications and the RNIC. Tenant operations are handled by Justitia before
arriving at the RNIC.

• Sender-based proactive resource mediation: Justitia proactively controls RNIC resource utiliza-
tion at the sender side. This is based on the observation that the sender of an RDMA operation
– that decides when an operation gets initiated, how large the message is, and in which direction
the message flows – has active control over every aspect of the transmission while the other side
of the connection remains passive. Such sender-based control can react before the RNIC takes
over and maintain isolation by directly controlling RNIC resources.

• Dynamic receiver-side updates: Pure sender-based approaches can sometimes lead to spurious
resource allocation when multiple senders coexist but are unaware of each other. Justitia leverage

3Each granularity has its pros and cons when it comes to performance isolation, without any conclusive answer on
the right one [159].
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receiver-side updates to provide information (e.g., the arrival or departure of an application) back
to the senders to react correctly when a change in the setting happens.

• Passive latency monitoring: Instead of actively measuring each application’s latency, which can
introduce high overhead, Justitia uses passive latency monitoring by issuing reference flows to
detect RNIC resource contention.

• Message-level shaping with splitting: Justitia performs shaping at the message level to suit
RDMA’s message-oriented transport layer. At the message level, it is easy to apply specific
strategies to control how messages enter the RNIC based on their sizes and the resource they
consume. Large messages are split into roughly equal-sized sub-messages or chunks to (i) avoid
a single message requesting too many RNIC resources; (ii) facilitate network sharing policies
such as fair/weighted bandwidth share; and (iii) mitigate HOL Blocking for latency-sensitive
applications.

2.4.2 System Overview

Figure 2.7 presents a high-level system overview of Justitia handling an RDMA WRITE operation
(to compare with Figure 2.2). Each machine has a Justitia daemon that performs latency monitoring
and proactive rate management, and applications create QPs using the existing API to perform
RDMA communication. Justitia relies on applications to optionally identify their application type.
By default, they are treated as bandwidth-sensitive. VMs, containers, bare-metal applications, and
SR-IOV are all compatible with the design of Justitia.
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As before, the user application starts an RDMA WRITE operation by 1 posting a WQE into
the Send Queue. Latency-sensitive applications will 2a bypass Justitia and directly interact with
the RNIC as shown in Figure 2.2. The other two types of applications will enter Justitia’s shaper.
The Splitter will 2b split the big message from a bandwidth-sensitive applications equally into
sub-messages or 2c do nothing given a small message from a throughput-sensitive application.
We introduce Split Connection – and corresponding split queue pair (Split QP) – to handle the
messages passed through the Splitter. Before sending out the message, it 3 asks the daemon to
fetch a token from Justitia, which is generated at a rate to maximize RNIC resource utilization
consumed by resource-hungry applications. Once the token is fetched, the Split QP 4 posts a
WQE for the sub-message into its SQ and rings the door bell to notify the RNIC. The RNIC then
grabs the WQE from Split QP, issue a DMA read for the actual data in application’s memory region,
and sends the message to the remote side (arrows not shown in the figure). Steps 3 and 4 repeat
until all messages in the Split QP have been processed. The implementation details of Split QP is
in Section 2.5.1.

The Justitia daemon in Figure 2.7 is a background process that performs latency monitoring and
proactive rate management to maximize RNIC resource utilization when latency target is met.

2.4.3 Justitia Daemon

Justitia daemon performs two major tasks: (i) proactively manages rate of all bandwidth- and
throughput-sensitive applications using the hose model [71]; (ii) ensures predictable performance
for latency-sensitive applications while maximizing RNIC resource usage.

2.4.3.1 Minimum Guaranteed Rate

Justitia enforces rate based on the classic hose model [71], and always maintains a minimum
guaranteed rate Rmin :

Rmin =

∑
𝑤𝑖
𝐵
+∑𝑤𝑖

𝑇∑
𝑤𝑖
𝐵
+∑𝑤𝑖

𝑇
+∑𝑤𝑖

𝐿

×MaxRate

where 𝑤𝑖
𝑋

represents the weight of application i of type X (i.e., bandwidth-, throughput-, or latency-
sensitive), and MaxRate represents the maximum RNIC bandwidth or maximum RNIC throughput
(both are pre-determined on a per-RNIC basis) depending on the type of the application. The idea of
Rmin is to recognize the existence of latency-sensitive applications, and provide isolation for them by
taking out their share from the RNIC resources which otherwise they cannot acquire by themselves.
In the absence of latency-sensitive applications (i.e.,

∑
𝑤𝑖
𝐿
= 0), Rmin is equivalent to MaxRate,

and all the resource-hungry applications share the entire RNIC resources. If all applications have
equal weights, and there exist B bandwidth-, T throughput-, and L latency-sensitive applications,
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Algorithm 1: Maximize SafeUtil
1 Function OnLatencyFlowUpdate(𝐿, Estimated99 ):
2 if 𝐿 = 0 then ⊲ Reset if no latency-sensitive applications
3 SafeUtil =MaxRate

4 else
5 if Estimated99 > Target99 then
6 SafeUtil = 𝑚𝑎𝑥(SafeUtil2 ,Rmin )
7 else
8 SafeUtil = SafeUtil + 1
9 𝜏 = TokenBytes / SafeUtil

Rmin can be simplified as 𝐵+𝑇
𝐵+𝑇+𝐿 ×MaxRate.

In the presence of a large number of latency-sensitive applications, Rmin could be really small,
essentially removing RNIC resource guarantee. To accommodate such cases, one can fix 𝐿 = 1 no
matter how many latency-sensitive applications join the system since they do not consume much
of RNIC’s resources. We find this setting works well in practice (§2.6.4) and make it the default
option for Justitia.

With Rmin provided, Justitia then maximizes RNIC’s safe resource utilization (which we denote
SafeUtil ) until the performance of latency-sensitive applications crosses the target tail latency
(Target99 ).

2.4.3.2 Latency Monitoring via Reference Flows

Justitia does not interrupt or interact with latency-sensitive applications because (i) they cannot
saturate either of the two RNIC resources, and (ii) interrupting them fails to preserve RDMA’s
ultra-low latency.

Instead, whenever there exists one or more latency-sensitive applications to particular receiving
machine, Justitia maintains a reference flow to that machine which keeps sending 10B messages to
the same receiver as the latency-sensitive applications in periodic intervals (by default, RefPeriod
= 20 𝜇s) to estimate the 99th percentile (Estimated99 ) latency for small messages. By monitoring
its own reference flow, Justitia does not need to wait on latency-sensitive applications to send a large
enough number of sample messages for accurate tail latency estimation. It does not add additional
delay by directly probing those applications either.

Given the stream of measurements, Justitia maintains a sliding window of the most recent
RefCount (=10000) measurements for a reference flow estimate its tail latency.
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2.4.3.3 Maximizing SafeUtil

Using the selected latency measurement from the reference flow(s), Justitia maximizes SafeUtil

based on the algorithm shown in Pseudocode ??. To continuously update SafeUtil , Justitia uses
a simple AIMD scheme that reacts to Estimated99 every RefPeriod interval as follows. If the
estimation is above Target99 , Justitia decreases SafeUtil by half; SafeUtil is guaranteed to be
at least Rmin . If the estimation is below Target99 , Justitia slowly increases SafeUtil . Because
SafeUtil ranges between Rmin to the total RNIC resources and latency-sensitive applications
are highly sensitive to too high a utilization level, our conservative AIMD scheme, which drops
utilization quickly to meet Target99 , works well in practice.

To determine the value of Target99 , we constructs a latency oracle that performs pair-wise
latency measurement by issuing reference flows across all the nodes in the cluster when there is no
other background. Microsoft applies a similar approach in [93], which is shown to work well in
estimating steady-state latency in the cluster. We adopt this approach to give a good estimate of the
latency target under well-isolated scenarios.

2.4.3.4 Token Generation And Distribution

Justitia uses multi-resource tokens to enforce SafeUtil among the 𝐵 bandwidth- and 𝑇 throughput-
sensitive applications in a fair or weighted-fair manner. Each token represents a fixed amount
of bytes (TokenBytes ) and a fixed number of messages (TokenOps ). In other words, the size of
TokenBytes determines the chunk size a message from bandwidth-sensitive application is split into.
A token is generated every 𝜏 interval, where the value of 𝜏 depends on SafeUtil as well as on
the size of each token. For example, given 48 Gbps application-level bandwidth and 30 Million
operations/sec on a 56 Gbps RNIC, if TokenBytes is set to 1MB, then we set TokenOps =5000 ops
and 𝜏 =167 𝜇s.

Justitia daemon continuously generates one token every 𝜏 interval and distributes it among the
active resource-hungry applications in a round-robin fashion based on application weights 𝑤𝑖

𝑋
.

When 𝑤𝑖
𝑋

= 1 for all applications, Justitia enforces traditional max-min fairness; otherwise, it
enforces weighted fairness. Each application independently enforces its rate using one of the
shapers described below.

2.4.4 Justitia Shapers

Justitia shapers – implemented in the RDMA driver – enforce utilization limits provided by the
Justitia daemon-calculated tokens. There are two shapers in Justitia: one for bandwidth- and
another for throughput-sensitive applications.
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Split Connection Justitia introduces the concept of a Split Connection to provide an interface to
coordinate between tenant applications and the RNIC. It consists of a message splitter and custom
Split QPs (§2.5.1) to initiate RDMA operations for tenants. Each application’s Split Connection
cooperate with Justitia daemon to pace split messages transparently.

Shaping Bandwidth-Sensitive Applications. This involves two steps: splitting and pacing.
For any bandwidth-sensitive application, Justitia transparently divides any message larger than
TokenBytes into TokenBytes -sized chunks to ensure that the RNIC only sees roughly equal-sized
messages. Splitting messages for diverse RDMA verbs – e.g., one-sided vs. two-sided – requires
careful designing (§2.5.1).

Given chunk(s) to send, the pacer requests for token(s) from the Justitia daemon by marking itself
as an active application. Upon receiving a token, it transfers chunk(s) until that token is exhausted
and repeats until there is nothing left to send. The application is notified of the completion of a
message only after all of its split messages have been transferred.

Batch Pacing for Throughput-Sensitive Applications. These applications typically deal with
(batches of) small messages. Although there is no need for message splitting, pacing individual
small messages requires the daemon to generate and distribute a large number of tokens, which
can be CPU-intensive. Moreover, for messages as small as 16B, such fine-grained pacing cannot
preserve RDMA’s high message rates.

To address this, Justitia performs batch pacing enabled by Justitia’s multi-resource token. Each
token grants an application a fixed batch size (TokenOps ) that it can send together before receiving
the next token. Batch pacing on throughput-sensitive applications removes the bottleneck on token
generation and distribution; it also relieves daemon CPU cost with a unified token bucket.

Mitigating Head-of-Line Blocking. One of the foremost goals of Justitia is to mitigate HOL
blocking caused by the bandwidth-sensitive applications to provide predictable latencies. To
achieve this goal, we need to split messages into smaller chunks and pace them at a certain rate
(enforcing SafeUtil ) with enough spacing between them to minimize the blocking. However, this
simple approach creates a dilemma. On the one hand, too large a chunk may not resolve HOL
Blocking. On the other hand, too small a chunk may not be able to reach SafeUtil . It also leads
to increased CPU overhead from using a spin loop to fetch tokens generated in a very short period
in which context switches are not affordable. This is a manifestation of the classic performance
isolation-utilization tradeoff. We discuss how to pick the chunk size in Section 2.5.2.
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Figure 2.8: How Justitia handles READs via remote control.

2.4.5 Dynamic Receiver-Side Updates

Justitia relies on receiver-side updates to coordinate among multiple senders to avoid spurious
allocation of RNIC resources. The benefits of this design is three-fold: (i) it coordinates with
multiple senders to provide the correct resource allocation; (ii) it keeps track of RDMA READ
issued which can collide with applications issuing RDMA WRITE in the opposite direction;
(iii) it mitigates receiver-side engine congestion by rate-limiting senders with the correct fan-in
information.

The updates are communicated among Justitia Daemons only when a change in the application
state happened to a certain receiver (i.e., an arrival or an exit of an application) is detected. Two-
sided operations, SEND and RECV, are selected in such case so that the daemon gets notified
when an update arrives. Once a change is detected by a sender, it informs the receiver, which then
broadcasts the change back to all the senders it connects to so that they can update the correct Rmin .
In such case, Rmin considers remote resource-hungry application count as part of the total share.
If the local daemon has not issued a reference flow and a remote latency-sensitive applications
launches to the receiver, the daemon will start a new reference flow to start latency monitoring.

Handling READs RDMA specification allows remote machines to read from a local machine
using the RDMA READ verb. RDMA READ operations issued by machine 𝐴 to read data
from machine 𝐵 compete with all sending operations (e.g., RDMA WRITE) from machine 𝐵.
Consequently, Justitia must handles remote READs as well.

In such a case, the receiver of the READ operation, machine 𝐵, sends the updated guaranteed
utilization Rmin , with the updated count of senders including remote READ applications) as shown
in 1 in Figure 2.8. After 𝐴 receives that utilization, it operates RDMA READ by interact with
Justitia normally via 2 → 5 and enforces the updated rate.
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2.5 Implementation

We have implemented the Justitia daemon as a user-space process in 3,100 lines of C, and the
shapers are implemented inside individual RDMA drivers with 5,200 lines of C code. Our cur-
rent implementation focuses on container/bare-metal applications. Justitia code is available at
https://github.com/SymbioticLab/Justitia.

2.5.1 Transparently Splitting RDMA Messages

Justitia splitter transparently divides large messages of bandwidth-sensitive applications into smaller
chunks for pacing. Our splitter uses a custom QP called a Split QP to handle message splitting,
which is created when the original QP of a bandwidth-sensitive flow is created. A corresponding
Split CQ is used to handle completion notifications. A custom completion channel is used to poll
those notifications in an event-triggered fashion to preserve low CPU overhead.

To handle one-sided RDMA operations, when detecting a message larger than TokenBytes ,
we divide the original message into chunks and only post the last chunk to the application’s QP
(Figure 2.9). The rest of the chunks are posted to the Split QP. Split QP ensures all chunks have
been successfully transferred before the last chunk handled by the application’s QP. The two-
sided RDMA operations such as SEND are handled in a similar way, with additional flow control
messages for the chunk size change and receive requests to be pre-posted at the receiver side.
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2.5.2 Determining Token Size for Bandwidth Target

One of the key steps in determining SafeUtil is deciding the size of each token. Because the RNIC
can become throughput-bound for smaller messages instead of bandwidth-bound, we cannot use
arbitrarily small messages to resolve HOL blocking. At the same time, given a utilization target,
we want to use the smallest TokenBytes value to achieve that target to reduce HOL blocking while
maximizing utilization.

Instead of dynamically determining it using another AIMD-like process, we observe that (i) this
is an RNIC-specific characteristic and (ii) the number of RNIC types is small. With that in mind,
we maintain a pre-populated dictionary to store the smallest token size that can saturate a given rate
(to enforce SafeUtil ) when sending in a paced batch for different latency targets; Justitia simply
uses the mappings during runtime. When latency-sensitive applications are not present, a large
token size (1MB) is used. Otherwise, Justitia looks up the token size in the dictionary based on the
current SafeUtil value. This works well since the lower the SafeUtil is, the smaller the chunk size
it requires to achieve such SafeUtil , and the better it helps mitigating HOL blocking. Based on our
microbenchmarks (Figure 2.10), we pick 5KB as the chunk size when latency-sensitive applications
are present.

2.6 Evaluation

In this section, we evaluate Justitia’s effectiveness in providing multi-tenancy support among
latency-, throughput-, and bandwidth-sensitive applications on InfiniBand and RoCEv2. To mea-
sure latency, we perform 5 consecutive runs and present their median. We do not show error bars
when they are too close to the median.

Our key findings can be summarized as follows:
• Justitia can effectively provide multi-tenancy support highlighted in Section 2.3 both in mi-

crobenchmarks and at the application-level (§2.6.1).
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Figure 2.11: Performance isolation of a latency-sensitive application running against a bandwidth-
sensitive one.
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Figure 2.12: Latency of a latency-sensitive application running against a bandwidth-sensitive
application with 4 QPs with a relaxed latency target (10 𝜇s).

• Justitia scales well to a large number of applications and works for a variety of settings (§2.6.2);
it complements DCQCN and hardware virtual lanes (§2.6.3).

• Justitia’s benefits hold with many latency- and bandwidth-sensitive applications (§2.6.4), in
incast scenarios (§2.6.5), and under unexpected network congestion (§2.6.6).
A detailed sensitivity analysis of Justitia parameters can be found in Appendix A.4.

2.6.1 Providing Multi-Tenancy Support

We start by revisiting the scenarios from Section 2.3 to evaluate how Justitia enables sharing
policies among different RDMA applications. We use the same setups as those in Section 2.3.
Unless otherwise specified, we set Target99 =2 𝜇s on both InfiniBand and RoCEv2 for the latency-
sensitive applications. Justitia works well in 100 Gbps networks too (Appendix A.3.1). Unless
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Figure 2.14: Performance isolation of a latency-sensitive application running against a throughput-
sensitive application.
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Figure 2.15: Performance isolation of a throughput-sensitive application running against a
bandwidth-sensitive application.

otherwise specified, Rmin with all applications sharing the same weights is enforced as a default
policy.
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Figure 2.16: [InfiniBand] Performance isolation of DARE running against Crail.
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Figure 2.17: [InfiniBand] Justitia scales to a large number of applications and still provides equal
share. The error bars represent the minimum and the maximum values across all the applications.

Predictable Latency Latency-sensitive applications are affected the most when they compete
with a bandwidth-sensitive application. In the presence of Justitia, both median and tail latencies
improve significantly in both InfiniBand and RoCEv2 (Figure 2.11a). Due to the enforcement of
Rmin , the bandwidth-sensitive application is receiving half of the capacity (Figure 2.11b).

Next we evaluate how Justitia performs when the latency target is set to a relaxed value (Target99
=10 𝜇s) that can be easily met (Figure 2.12). For a slightly high Target99 , Justitia maximizes
utilization, illustrating that splitting and pacing are indeed beneficial.

Fair Bandwidth and Throughput Sharing Justitia ensures that bandwidth-sensitive applications
receive equal shares regardless of their message sizes and number of QPs in use (Figure 2.13) with
small bandwidth overhead (less than 6% on InfiniBand and 2% on RoCEv2). The overhead becomes
negligible when applying Justitia to throughput- or latency-sensitive applications (Figure 2.14).
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Figure 2.18: [InfiniBand] Latency-sensitive applications with different message sizes competing
against a bandwidth-sensitive app.

Justitia’s benefits extends to the bandwidth- vs through-sensitive application scenario as well.
In this case, it ensures that both receive roughly half of their resources. Figure 2.15 illustrates this
behavior. In both InfiniBand and RoCEv2, the throughput-sensitive application is able to achieve
half of its original message rate of itself running alone (Figure 2.15a). The bandwidth-sensitive
application, on the other hand, is limited to half its original bandwidth as expected (Figure 2.15b).

Justitia and Real-World RDMA Applications To demonstrate that Justitia can isolate highly
optimized real-world applications, we performed experiments with DARE and Crail. Thanks to
Justitia’s high transparency, we did not need to make any source code changes in Crail (given it is
bandwidth-sensitive by default), and we only changed DARE by marking it as latency-sensitive.

From these experiments, we find that Justitia improves isolation for latency-sensitive applications
while also preserving high bandwidth of the background storage application. Figure 2.16 plots the
performance of DARE and Crail after applying Justitia with the same setting as in Section 2.3.2.
We observe that, with Justitia, DARE achieves performance that is close to running in isolation
even when running alongside Crail, and Justitia improves DARE’s tail latency performance by 3.4×
when compared to the baseline scenario while Crail also achieves 81% of its original throughput
performance. This is close to the expected throughput of 8

9 of Crail’s original throughput since in
this experiment Justitia treats the 8 parallel writes on top of Crail as separate applications.

Justitia improves performance isolation of FaSST by 2.5× in throughput and eRPC by 32.2× in
tail latency. More details can be found in Appendix A.3.2.
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Figure 2.19: [DCQCN] Latency-sensitive application against a bandwidth-sensitive one.

2.6.2 Justitia Deep Dive

Scalability and Rate Conformance Figure 2.17a shows that as the number of bandwidth-
sensitive applications increases, all applications receive the same amount of bandwidth using
Justitia with total bandwidth close to the line rate. Justitia also ensures that all throughput-sensitive
application send roughly equal number of messages (Figure 2.17b).

CPU and Memory Consumption Justitia daemon uses one dedicated CPU core per node to
generate and distribute tokens. Its memory footprint is not significant.

Varying Message Sizes Justitia can provide isolation at a wide range of message sizes for
latency-sensitive applications (Figure 2.18). The bandwidth-sensitive application receives half the
bandwidth in all cases.

2.6.3 Justitia + X

Justitia + DCQCN The anomalies we discover in this chapter does not stem from the network
congestion, but rather happens at the end hosts. We found that DCQCN falls short for latency- and
throughput-sensitive applications (Figures 2.19, 2.20, 2.21). Justitia can complement DCQCN and
improve latencies by up to 8.6× and throughput by 2.6×.

Justitia + Hardware Virtual Lanes Although RDMA standards support up to 15 virtual lanes
[31] for separating traffic classes, they only map to very few hardware shapers and/or priority
queues (2 queues in our RoCE NIC) that are rarely sufficient in shared environments [126, 25].
Besides, the hardware rate limiters in the RNIC are slow when setting new rates (2 milliseconds
in our setup), making it hard to use with real dynamic arrangement. Moreover, it is desirable to
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Figure 2.20: [DCQCN] Throughput-sensitive app against a bandwidth-sensitive one.
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Figure 2.21: [DCQCN] Latency-sensitive application against a throughput-sensitive one.
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Figure 2.22: [RoCEv2] A bandwidth-, throughput-, and latency-sensitive application running on
two hardware priority queues at the NIC. The latency-sensitive application uses one queue, while
the other two share the other queue.

achieve isolation within each priority queue, as those hardware resources are often used to provide
different levels of quality of service, within which many applications reside.
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Figure 2.23: [InfiniBand] Justitia isolating 8 latency-sensitive applications from 8 bandwidth-
sensitive ones. Note that 8/9th of the bandwidth share is guaranteed since Justitia counts all
latency-sensitive apps as one by default (§2.4.3.3).

In this experiment, we show how limited number of hardware queues are insufficient to provide
isolation and how Justitia can help in this scenario. we run three applications, one each for each
of the three types (Figure 2.22). Although the latency-sensitive application remains isolated in
its own class, the bandwidth- and throughput-sensitive applications compete in the same class.
As a result, the latter observes throughput loss (similar to Figure 2.15). Justitia can effectively
provide performance isolation between bandwidth- and throughput-sensitive applications in the
shared queue.

2.6.4 Isolating among More Competitors

We focus on Justitia’s effectiveness in isolating many applications with different requirements and
performance characteristics. Specifically, we consider 8 bandwidth-sensitive applications – 2 each
with message sizes: 1MB, 10MB, 100MB, and 1GB, and 8 latency-sensitive applications. We
measure the latency and bandwidth when all the applications are active in Figure 2.23. Target99 is
set to 2𝜇s and 20 million samples are collected for latency measurements.

Without Justitia, latency-sensitive applications suffer large performance hits: individually each
application had median and 99th percentile latencies of 1.3 and 1.4 𝜇s (Figures 2.3a and 2.3b).
With bandwidth-sensitive applications, they worsen by 71.4× and 79.8×. Justitia improves median
and tail latencies of latency-sensitive applications by 26.5× and 12.7× while guaranteeing Rmin

among all the applications.
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Figure 2.24: [DCQCN] Incast experiment with 33 senders and a single receiver. 32 senders launch
bandwidth-sensitive applications, the other sender launches a latency-sensitive application.

2.6.5 Handling Incast with Receiver-Side Updates

So far, we have focused on host-side RNIC contentions where the network fabric is not a bottleneck.
We now evaluate how Justitia leverages receiver-side updates to handle receiver-side incast in both
RoCEv2 with DCQCN and InfiniBand with its native credit-based flow control. In this experiment,
33 senders are used with the first 32 continuously launch a bandwidth-sensitive application sending
1MB messages to a single receiver. Simultaneously, the last sender launches a latency-sensitive
application with messages sent to the same receiver. As described in Section 2.4.5, Justitia daemon
at the receiver sends updates to all the senders whenever a sender application starts or exits, resulting
in 1

32 -th of line rate guaranteed at each of the first 32 senders.
Figure 2.24 plots the results of this experiment, which show that Justitia still reduces tail latency

even after the impact of fabric-level congestion on the reference flow latency measurements.
Since the monitored latency misses the target, all the bandwidth-sensitive applications send at
the minimum guaranteed rate. However, Justitia still achieves high aggregate bandwidth because
this is greater than the fair share. This shows that Justitia complements congestion control and
further improves the performance of latency-sensitive applications by mitigating receiver-side RNIC
congestion.

We have also included a discussion on frequently asked questions regarding reference flows’
impact in large-scale incast scenarios in Appendix A.5.4.

2.6.6 Justitia with Unexpected Network Congestion

When there is congestion inside the network, all traffic flowing through the network will experience
increased latency, including the packets generated by Justitia as latency signals. Because today’s
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Figure 2.25: [DCQCN] Justitia’s performance when Inter-ToR links are congested. Justitia achieves
the same bandwidth performance because the total amount of bandwidth share on 𝑆25 is smaller
than SafeUtil due to other traffic flowing in the fabric.

switches and NICs do not report their individual contributions to end-to-end latency, Justitia cannot
tell them apart. However, in practice, this is not a problem because the same response is appropriate
in both scenarios.

To evaluate how Justitia performs under such cases, we performed experiments utilizing two
interconnected ToR switches on CloudLab [57]. There are servers attached to each ToR switch,
and every server has a line rate of 10Gbps. The experiment topology is shown in Figure 2.25a. In
this topology, there is a third core switch that connects to each of the ToR switches with a link with
a capacity of 160 Gbps. In this experiment, we enable DCQCN at all the servers and ECN marking
at the ToR switches in the cluster.

To create a congested ToR uplink, we launch 24 bandwidth-sensitive applications each issuing
1MB messages from 24 servers (𝑆1–𝑆24) under one rack to the other 24 servers (𝑅1–𝑅24) under
another rack, and none of the servers run Justitia. At the same time, we issue 8 bandwidth-sensitive
applications and 1 latency-sensitive application between a pair of servers (𝑆25 and 𝑅25) that is
controlled by Justitia. Figure 2.25 shows the performance with and without Justitia applied. Even
in the case where fabric congestion is out of Justitia’s control, we see that Justitia can still function
correctly, and Justitia still provides additional performance isolation benefits when compared with
just using congestion control (DCQCN).

2.7 Related Work

RDMA Sharing Recently, large-scale RDMA deployment over RoCEv2 have received wide
attention [237, 92, 156, 157, 135]. However, the resulting RDMA congestion control algo-
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rithms [156, 237, 132, 135] primarily deal with Priority-based Flow Control (PFC) to provide
fair sharing between bandwidth-sensitive applications inside the network. In contrast, Justitia
focuses on RNIC isolation and complements them (§2.6.3).

Justitia is complementary to FreeFlow [120] as well. FreeFlow enables untrusted containers to
securely preserve the performance benefits of RDMA. Because it does not change how verbs are sent
to queue pairs, it can still suffer from the performance isolation problems Justitia addresses. Justitia
can complement FreeFlow to provide performance isolation by implementing Justitia splitter in
FreeFlow’s network library and Justitia daemon in its virtual router.

SR-IOV [203] is a hardware-based I/O virtualization technique that allows multiple VMs to
access the same PCIe device on the host machine. Justitia design does not interfere with SR-IOV
and will still work on top of it. To provide multi-tenant fairness, Justitia can be modified to distribute
credits among VMs via shared memory channel similar to [120].

LITE [214] also addresses resource sharing and isolation issues in RNICs. However, LITE does
not perform well in the absence of hardware virtual lanes (Appendix A.3.4).

PicNIC [128] tries to provide performance isolation at the receiver-side engine congestion in
software-based kernel-bypass networks, where it utilizes user-level packet processing instead of
offloading packetization to an RNIC. Hence, PicNIC’s CPU-based resource allocation and packet-
level shaping cannot be applied to RDMA.

Swift [125] also considers receiver-side enginer congestion in software KBN by using a dedicated
enging congestion window in the congestion algorithm. However, both Swift and PicNIC ignores
sender-side congestion.

Offloading with SmartNICs Recent research in SmartNICs has focused on providing pro-
grammability and efficiency in hardware offloading [117, 131, 77, 30, 140]. However, on-NIC
packet orchestration leads to tens of microsecond overhead [77, 206], making performance-related
multi-tenancy support still an open problem.

NICA [75] provides isolation for FPGA-based SmartNICs by I/O channal virtualization and
time-sharing of the Acceleration Functional Units. Justitia focus on normal RNICs and does not
require hardware changes.

Link Sharing Max-min fairness [102, 65, 38, 199] is the well-established solution for link sharing
that achieves both sharing incentive and high utilization, but it only considers bandwidth-sensitive
applications. Latency-sensitive applications can rely on some form of prioritization for isolation
[25, 96, 219].

Although DRFQ [83] deals with multiple resources, it considers cases where a packet se-
quentially accessed each resource, both link capacity and latency were significantly different than
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RDMA, and the end goal is to equalize utilization instead of performance isolation. Furthermore,
implementing DRFQ required hardware changes.

Both Titan [207] and Loom [205] improve performance isolation on conventional NICs by
programming on-NIC packet schedulers. However, this is not sufficient for RDMA performance
isolation because it schedules only the outgoing link. Further, Justitia works on existing RNICs
that are opaque and do not have programmable packet schedulers.

TAS [118] accelerates TCP stack by separating the TCP fast-path from OS kernel to handle
packet processing and resource enforcement. However, TAS does not solve the type of isolation
anomalies Justitia deals with. Justitia’s design idea can be applied to improve isolation for TAS.

Datacenter Network Sharing With the advent of cloud computing, the focus on link sharing has
expanded to network sharing between multiple tenants [159, 179, 51, 34, 197, 28]. Almost all of
them – except for static allocation – deal with bandwidth isolation and ignore predicted latency on
latency-sensitive applications.

Silo [104] deals with datacenter-scale challenges in providing latency and bandwidth guarantees
with burst allowances on Ethernet networks. In contrast, we focus on isolation anomalies in
multi-resource RNICs between latency-, bandwidth-, and throughput-sensitive applications.

2.8 Concluding Remarks

We have demonstrated that RDMA’s hardware-based kernel bypass mechanism has resulted in
lack of multi-tenancy support, which leads to performance isolation anomalies among bandwidth-,
throughput-, and latency-sensitive RDMA applications across InfiniBand, RoCEv2, and iWARP
and in 10, 40, 56, and 100 Gbps networks. We presented Justitia, which uses a combination of
sender-based resource mediation with receiver-side updates, Split Connection with message-level
shaping, and passive machine-level latency monitoring, together with a tail latency target as a single
knob to provide network sharing policies for RDMA-enabled networks.
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CHAPTER 3

Aequitas: Admission Control for
Performance-Critical RPCs in Datacenters

Following Justitia, we extend our QoS research from a host machine into datacenter networks. In
this chapter, we discuss potential QoS issues in network overloads, which is common and inevitable
in datacenters, as long as multiple multiple applications are deployed and have their peak times. To
provide better QoS in case of network overloads, we build Aequitas, whose core is an admission
control algorithm. Aequitas works on the RPC level, and provides SLO guarantees on the network
component of RPC latency by leveraing Weighted-Fair Queueing (WFQ).

The remaining of this chapter is organized as follows. Chapter 3.1 gives the introduction of
Aequitas. Chapter 3.2 describes the background and motivation of datacenter RPCs and why
they need better QoS support. We then take a deep dive into the theoretical analysis of WFQ
delay bound, based on which we design Aequitas admission control. Chapter 3.3 and Chapter 3.5
describe the system overview and design details of Aequias. Evaluation results are discussed in
Chapter 3.6, followed by a discussion of related work in Chapter 3.7. We finally conclude Aequitas
in Chapter 3.8.

3.1 Introduction

Modern datacenter applications are composed of many microservices [173, 192, 152, 56] that
interact with each other and remote disaggregated storage [215, 28, 212, 235, 233] using Remote
Procedure Calls (RPCs). As of 2021, RPCs generate 95%+ of the application traffic in Google
production datacenters, of which ∼75% is to and from storage systems. To satisfy diverse business
requirements of modern applications, RPCs generated by these microservices often have Service
Level Objectives (SLOs) that vary widely. While many performance-critical (𝑃𝐶) RPCs have
microsecond-scale SLOs (e.g., interactive user-facing traffic), some can take much longer (e.g.,
maps traffic for ride-sharing applications). Non-critical (𝑁𝐶) RPCs often constitute bulk storage
operations, and there are best-effort (𝐵𝐸) RPCs from background analytics and machine learning.
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Because of many recent advances in host and cluster networking, most RPCs complete within
their SLOs. However, supporting predictable RPC performance under overload scenarios still
remains elusive. Datacenter networks are deliberately over-subscribed for statistical multiplexing
as it would otherwise be too expensive to provision. Consequently, network overloads—sometimes
as high as 8× the average—are inevitable when multiple applications simultaneously surge in
their demands. Under sustained network overload, the network component of RPC latency often
dominates to the point of making the service effectively unavailable.

Recent research on meeting low-latency application needs in datacenter networks falls into three
broad categories. First, many congestion control (CC) schemes [24, 238, 135, 156, 125] perform
well in maximally using link capacity, keeping losses and network queues low in times of overload.
Yet, CC by itself cannot provide guarantees for RPC latency: under overload, CC fair-shares the
network bandwidth and causes a slowdown for all RPCs. Second, priority-based schemes [25, 160]
minimize the average flow completion time by prioritizing smaller flows based on size or strictly
apply application-defined priorities. The former does not work well when size and priority are not
aligned, while the latter incentivizes applications to mark all their RPC as the highest priority. We
observe both trends in production, and both lead to missed SLOs. On top of that, priority-based
schemes are not readily deployable in many existing datacenters. Finally, another line of work
focuses on providing bandwidth sharing guarantees [51, 91, 179, 34, 35, 180, 162], but these
efforts do not consider application priorities or provide RPC latency guarantees, make restrictive
assumptions on where overloads occur [197, 106] or involve centralized entities that are hard to
scale in large datacenters [177].

Our goal in this chapter is to provide SLOs for 𝑃𝐶 RPCs—regardless of their size—in the
network, even at the 99.9th percentile (99.9𝑡ℎ-𝑝). We do so by focusing on the network component
of RPC latency, which we call RPC Network-Latency (RNL). This leads to a design where RPCs be-
come first-class citizens, and hosts make dynamic and local QoS-admission decisions to meet SLOs,
leveraging commodity network components with weighted fair queuing (WFQ) QoS capabilities.

We present Aequitas, a simple admission control system anchored in two key conceptual insights.
First, WFQ in switches has delay bounds that can be used to provide RNL SLOs in overload
situations. Building on network calculus concepts [58], we derive through theory and simulations
the admissible region based on per-QoS worst-case latency with respect to QoS utilization. Second,
by explicitly managing the traffic admitted on a per-QoS basis, we can guarantee a cluster-wide
per-QoS RNL SLO for all but the lowest QoS even under traffic overloads. Based on these insights,
the design of Aequitas can be summarized as follows:

(1) End-hosts align 1:1 the priority classes at the granularity of RPCs (𝑃𝐶, 𝑁𝐶 and 𝐵𝐸) to
high/medium/low-weight network QoS queues (QoSℎ, QoS𝑚, QoS𝑙) by encoding the QoS in the
packet’s DSCP header field. Switches are simple and enforce the standard QoS using WFQ.
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(2) Sending hosts employ a distributed admission control scheme to manage the traffic mix
across QoS levels. Hosts independently measure RNL for each QoS level. When the offered load
of QoSℎ or QoS𝑚 RPCs is high, hosts adaptively downgrade excess traffic to QoS𝑙 such that admitted
traffic in higher QoS classes meets SLOs, with no explicit coordination.

We evaluate Aequitas with packet-level simulations and testbed experiments using real applica-
tion workloads, and we also present early results from production deployment. We find that:

(1) Predictable latency performance can be realized cluster-wide through picking RPC winners
and losers explicitly. By measuring RNL for each QoS level and realizing explicitly when the
offered load is no longer in profile, hosts can make local decisions to admit or downgrade QoS for
an RPC—a simple and effective way to ensure that quality network experience is always available
for admitted traffic.

(2) With Aequitas, 𝑃𝐶 traffic is SLO-compliant not just at the mean, but also at the 99.9𝑡ℎ-𝑝
RNL, even when network demand spikes 10× beyond provisioned capacity. In production, Aequitas
achieves 10% average reduction in 99𝑡ℎ-𝑝 RNL across fifty clusters.

(3) There exists a trade-off between how strict the SLO is and amount of traffic which can
be admitted at that SLO. Aequitas achieves close to maximal traffic that can be admitted within
SLO-compliance.

(4) Judicious management of traffic mix across QoS levels can create lower latency for all
classes of traffic, including the 𝐵𝐸 class.

This work does not raise any ethical issues.

3.2 Background and Motivation

We begin with background on RPC workloads in modern datacenters, followed by how network
impacts RPCs and what challenges exist in mitigating the network impact.

3.2.1 RPC Workloads in Modern Datacenters

Modern datacenter applications that use microservice architectures [173, 192, 152, 56] or interact
with disaggregated memory and storage systems [215, 28, 212, 235, 233] rely heavily on RPCs.
An RPC is a programmatic request for action or information between components of applications,
and it can consist of dozens of individual packets. Hundreds of RPCs can be on the critical path
to completing an application-level operation. As a result, many datacenter application developers
today measure and reason about application performance in terms of RPC performance [201].
Indeed, RPCs generate 95%+ of the application traffic in our production datacenters, of which
∼75% is to and from storage devices.
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Figure 3.1: Normalized RPC size distribution of READs and WRITEs.

Business Priorities: Typical cluster applications in public clouds—Storage, MapReduce, dis-
tributed in-memory file system, web search indexing, query serving, and caching services being
the largest few in our production datacenters—classify their traffic into three priority classes:

(1) Performance-critical (𝑃𝐶) RPCs have tail latency SLOs. Sometimes they are associated
with real-time interactive applications or carry key control traffic.

(2) Non-critical (𝑁𝐶) RPCs generally care about sustained rate and their latency SLOs are less
stringent on the tail relative to 𝑃𝐶 RPCs.

(3) Best-effort (𝐵𝐸) RPCs have the lowest priority, such as background backup traffic which
sees no imminent disadvantage to elevated latency as long as it eventually completes. 𝐵𝐸 RPCs
have no SLOs and are akin to a scavenger class.

RPC priority classes are used in application-level logic as well as for prioritization under
server/client overloads. For storage, 𝑃𝐶 RPCs might constitute small random access reads and
metadata exchange; 𝑁𝐶 RPCs might include large sequential reads, and 𝐵𝐸 might be for backups
that are most concerned with long-term average throughput. For an online retail tenant running on
public cloud, revenue-generating user traffic is 𝑃𝐶; a ride-sharing tenant may consider real-time
maps traffic to be 𝑃𝐶; and a social networking tenant would classify its user-facing traffic to be 𝑃𝐶.
Machine learning training or analytics workloads may be 𝐵𝐸 . A key goal in assigning priorities is
to avoid lower priority RPCs from interfering with those with higher priority.

Size Distributions: We find that RPC size is not fully correlated with priority from applications’
perspectives. Figure 3.1 shows the CDF of storage RPC sizes using response payload size for READ
RPCs and request payload size for WRITE RPCs collected in our datacenter for three categories
— 𝑃𝐶, 𝑁𝐶, 𝐵𝐸 — as per their application-level priorities. While it is true that the 𝑃𝐶 RPCs
are generally smaller than 𝑁𝐶 or 𝐵𝐸 RPCs, there are high-priority large 𝑃𝐶 RPCs. As such,
size-based network prioritization schemes proposed in the existing literature [25, 96, 160] can lead
to poor performance induced by priority inversion.
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Figure 3.2: RNL of [0–1KB] and [64–256KB] RPCs versus Min RTT. Each data point is a sampled
cluster.

3.2.2 Network Impact on RPCs

3.2.2.1 RPC Network Latency (RNL)

While end-to-end RPC latency serves as the primary metric for assessing regressions and triggering
production alerts, it consists of two primary components: client/server latency (CPU load, thread
scheduling, cache state) and network latency. In this work, we focus on meeting SLOs for the
component of RPC latency impacted by network overload, which we refer to as RPC network-
latency or RNL in this work.

Specifically, we define RNL as the time between the first RPC packet arriving at the transport
layer (such as TCP) and the time when the last packet of the RPC is acknowledged at the transport.
Appendix B.1 provides a detailed breakdown. RNL captures delays incurred in the host networking
stack due to network overload, including queuing delays incurred due to congestion control (CC)
backoff.

RNL depends on (i) the bandwidth available to an RPC, (ii) queuing and propagation delays
which comprise packet-level RTT, and (iii) congestion control decisions such as congestion window
and pacing rate. Figure 3.2 shows that RTT and bandwidth do not succinctly capture RNL in a
randomly sampled collection of our clusters. While RNL of small (<1 MTU) RPCs correlates well
with RTTs, RNL of large RPCs do not demonstrate the correlation. We can see clusters with low
RNL for small RPCs (and low RTTs) but showing high RNL for large RPCs. The main reason is
that an effective congestion control algorithm will keep packet delays low no matter how large the
offered load is, but at high offered loads, RPCs may be queued for long periods at the sending hosts.
Thus, providing either packet-level SLOs or bandwidth-SLOs in isolation are not meaningful to
application developers — they care about RPC latency SLOs.
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Figure 3.3: A congestion episode (w/o Aequitas) in production showing that increased load (bits/sec)
leads to RPC latency spikes. Higher RNL than RPC latency in some cases is due to sampling
differences.

3.2.2.2 Impact of Network Overloads on RNL

Sustained network overloads without admission control lead to queuing and packet drops, which
can significantly affect RPC performance as a whole as well as RNL. Figure 3.3 shows an example
of degraded RPC latency when network load surged to 8× the usual load at the ToR uplinks in a
production incident. RNL is a major contributing factor to the elevated latency. For many services,
such extreme degradation in latency can be tantamount to an unavailable service.

Although several proposals for network isolation [197, 106] assume that oversubscriptions occur
only at the edge ToR-to-NIC links, it is not always the case. Because typical workloads use relatively
little bandwidth compared to their peaks, it is cost-ineffective to provision peak capacity for all
workloads across all cuts of the network. As a result, overloads can occur anywhere in the network
along the path that an RPC takes between the client and the server. Kumar et al. [125] made a
similar observation.

3.2.3 Challenges in Mitigating the Network Impact

There are three primary approaches toward enforcing performance isolation between 𝑃𝐶, 𝑁𝐶, and
𝐵𝐸 RPC traffic in the network.

(1) Size-based approaches — such as Shortest Job First (SJF) and Shortest Remaining Time
First (SRTF) — do not work well because size and importance are often misaligned.

(2) Strict priority queuing (SPQ), where RPC priorities are pushed down into the network and
used as network priorities, provides a perverse incentive where developers mark all of their RPCs
as 𝑃𝐶 to receive good network performance. More importantly, strict priority queuing is known to
cause starvation if there are traffic surges with improperly configured high-priority traffic, and thus
is not widely used in many production networks.

(3) Weighted fair queuing (WFQ) is available in commodity switches/NICs and its bandwidth
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Figure 3.5: Distribution change of QoS classes over time.

sharing property enables the mapping from traffic priority classes to desired QoS levels.1 We
currently take this approach to map RPC priorities to network QoS levels2 in our datacenters.

Mapping RPC priorities to WFQ QoS levels, however, comes with two primary constraints.
First, such mappings are coarse; a common model used in practice by many cloud providers is to
map all traffic from an entire application to the same class [200, 34, 212, 104, 28]. For example,
if a business-critical application is marked as 𝑃𝐶, all its traffic (including 𝑁𝐶 and 𝐵𝐸 traffic) is
marked as critical. Second, QoS classes are not associated with guarantees or SLOs.

The common practice of allowing developers to set coarse-grained application-level priorities
leads to a surprising degree of mismatch between actual RPC priority and their supposed importance
in the network. In surveying our production traffic before the deployment of Aequitas, shown in
Figure 3.4, we found that 17.3% of 𝑃𝐶 RPCs did not flow on the highest class, while 54.5% of 𝐵𝐸
RPCs used a higher level than necessary. Pervasive priority misalignment can degrade 𝑃𝐶 RPC
latency due to 𝐵𝐸 overload even when there is sufficient capacity to meet SLO for 𝑃𝐶 RPCs.

A direct consequence of the above scenario is a race to the top: each time a network overload

1We refer to WFQ [65] as the general scheduling mechanism with Virtual-Time/PGPS [176] and DWRR [199] as
different implementations.

2NICs/switches support ∼10 WFQs per port; buffer space is shared across the ports based on usage.
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Figure 3.6: Aequitas system overview.

event occurs, applications that suffer an RNL SLO failure event are often granted a higher priority
class. Figure 3.5 shows how more application traffic moved to higher classes over time for the
services in our datacenters before we deployed Aequitas. Two underlying problems contribute to
this problem: (1) the granularity of mapping at the application level creates stronger QoS upgrade
pressure than necessary; and (2) the absence of a scheme that determines what traffic should get
access to limited resources when demand exceeds network bandwidth.

3.3 Aequitas Overview

3.3.1 Objectives and Challenges

Predictable RPC completion is a key performance goal in modern datacenter networks. Our goal
in this work is to provide RNL SLOs for RPC priority classes with performance requirements (PC
and NC). We face three challenges in achieving our goal:

(1) Expressing SLOs for a diverse set of applications. Latency degradation of RPCs can result
from an overload of compute, storage, or networking. It is key to tease out an SLO that the network
can be held accountable for.

(2) Structural. Given that overloads can occur anywhere in the network, the solution needs to
handle dynamic overloads appearing anywhere along the path an RPC traverses.

(3) Scale. There may be tens of thousands of hosts, thousands of tenants, and hundreds of
applications in a cluster, all requiring RPC performance at microsecond-scale.
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3.3.2 System Overview

Figure 3.6 presents a high-level system diagram of Aequitas. Aequitas resides in the RPC layer
and communicates with applications above it and network or transport stacks below it. Aequitas
works at the RPC level and does not interfere with underlying congestion control, and it leverages
weighted fair queuing (WFQ) available in commodity switches without making any modifications
to existing hardware.

Applications issue RPCs on RPC-channels,3 annotating their priority class, which maps to
a requested QoS class. The operator provides the per-QoS RNL SLO targets. Once an RPC
completes, Aequitas measures its RNL and feeds it into its admission control algorithm. By
comparing the RNL SLO targets and the actual measurements, the algorithm adjusts the amount
of traffic admitted per destination-host for the QoS at which the RPC ran. In this way, Aequitas
does not need extra signaling to determine the location of oversubscription points. Admission
control is enforced in a fully distributed manner among all the hosts without requiring centralized
knowledge. When admitting an RPC, Aequitas adopts a probabilistic approach by maintaining
admit probability to determine if an RPC should be admitted or downgraded to a lower QoS level.
Downgrade information is explicitly notified back to the application as a hint to adjust their RPC
priorities.

In the next section, we show theoretically why Aequitas’ central idea – managing RPC traffic
admitted across QoS levels with WFQ – can be a powerful knob for realizing RNL SLOs in
oversubscription situations.

3.4 Analytical Results

RPC network-latency is primarily dictated by bandwidth and queuing-delay. In this section, we
provide a theoretical characterization that motivated how we arrived at Aequitas design—controlling
RPC network-latency across priority classes to provide differentiated SLOs by controlling the
amount of traffic admitted on the respective QoS as realized by WFQ.

3.4.1 WFQ Bandwidth and Queuing-Delay Analysis

We find that WFQ is an excellent building block to help provide RNL SLOs as not only does it
guarantee a minimum bandwidth for a traffic class, it also provides delay boundedness given its
utilization level.

Given 𝑁 QoS classes with 𝜙1, 𝜙2, · · · , 𝜙𝑁 representing the weights of the WFQs that serve the

3An RPC-channel maps to one or more transport-layer socket/connection.
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𝜙𝑖 QoS weight of class 𝑖
𝑔𝑖 minimum guaranteed rate of class 𝑖
𝑠𝑖 instantaneous service rate received for class 𝑖
𝑟 total link capacity
𝑎𝑖 instantaneous arrival rate of class 𝑖
𝑎 aggregate instantaneous arrival rate at the link
𝜇 average load: average arrival rate over

the period normalized to line rate
𝜌 burst load: maximum instantaneous arrival rate

normalized to line rate

Table 3.1: Notation used in Section 3.4 and beyond.

QoS classes, the minimum guaranteed rate 𝑔𝑖 for class 𝑖 with line rate 𝑟 is given by 𝑔𝑖 = 𝜙𝑖∑
𝑗 𝜙 𝑗
𝑟. We

assume lower 𝑖 indicates a higher WFQ weight. WFQ is also work-conserving. If the instantaneous
demand for a QoS class is lower than the rate above, its traffic is completely isolated from the other
QoS classes and observes nearly zero queuing delay. Correspondingly, the bandwidth share of a
QoS class may exceed the rate above when other QoS classes have aggregate demands lower than
their share.

The seminal work in [176] describes the delay guarantees supported by WFQ: 1) the delay of a
QoS level can be bounded as a function of its own queue length independent of other queues and
arrivals of other levels; and that 2) it is feasible to compute the worst-case queuing delay when
sources are constrained by leaky-bucket rate limiters. We build upon this work using Network
Calculus [58] concepts to calculate delay bounds given different utilization levels in the QoS classes
instead of finding the absolute worst-case delay bounds across all possible arrival curves. Formally,
if we denote the arrival rate of a class 𝑖 as 𝑎𝑖 with the sum of arrival rates as 𝑎, and define QoS-mix as
the 𝑁-tuple ( 𝑎1

𝑎
,
𝑎2
𝑎
, ...,

𝑎𝑁
𝑎
); our analysis shows how QoS-mix affects WFQ’s per-QoS delay bounds

in overload situations. We refer to the 𝑖𝑡ℎ element in the QoS-mix as QoS𝒊-share. Compared to
prior work, the analysis is more general in that it can provide delay bounds given a QoS-mix, but
is less general as the closed-form equations are restricted to only two QoS levels.

Denote 𝑥 as QoSℎ-share of the QoS-mix, which is the ratio of QoSℎ traffic to the total arrival
rate 𝑎ℎ

𝑎
where 0 < 𝑥 < 1; QoS𝑙-share is (1 − 𝑥). The ratio of QoS weights for QoSℎ:QoS𝑙 is 𝜙:1.

Consider the traffic pattern shown in Figure 3.7.4 We define the entire sending period to be one
unit of time. Traffic arrives in bursts characterized by a burst parameter, 𝜌, which is the slope of
the black curve in the figure and 𝜌 > 1. All notation used for analysis is defined in Table 3.1. For
stability, there is an idle phase such that the average load 𝜇 within the period is less than 1.0. Thus,
the delay bound can be represented as a fraction of the period; by definition, the arriving traffic can

4This model is similar to a Leaky-Bucket formulation expressed differently to aid closed-form equations, with the
interval normalized to a unit of time.
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Figure 3.9: Simulated WFQ worst-case delay with 3 QoS levels under different QoSℎ:QoS𝑚:QoS𝑙
weights: (a) 8:4:1 and (b) 50:4:1. QoS-share of QoS𝑚 and QoS𝑙 is fixed at a ratio of 2:1.

be consumed within a single period. We denote this as normalized delay bound.
Different subdomains for 𝑥 yield different service curves and thus, a different delay-bound

representation, e.g., up until a certain value of 𝑥, QoSℎ experiences zero delay. Also, some of the
subdomains can be empty depending on the parameter values. Worst-case delay experienced by
QoSℎ as a function of 𝑥 (𝐷𝑒𝑙𝑎𝑦ℎ (𝑥)) is given by (detailed proof is in Appendix B.2):

0, 𝑥 ≤ 𝜙

𝜙 + 1
1

𝜌

𝜇( 𝜙 + 1
𝜙

𝑥 − 1

𝜌
), 𝜙

𝜙 + 1
1

𝜌
< 𝑥 ≤ 𝜙

𝜙 + 1
𝜇(1 − 𝑥) (𝜙 + 1 − 𝜙

𝜌 𝑥
), 𝜙

𝜙 + 1 < 𝑥 ≤ min{1 − 1

𝜙 + 1
1

𝜌
,
1

𝜌
}

𝜇( 1
𝜌
− 1

𝜌2
) 1
𝑥
, min{1 − 1

𝜙 + 1
1

𝜌
,
1

𝜌
} < 𝑥 ≤ 1

𝜌

𝜇(1 − 1

𝜌
), 𝑥 > max{ 𝜙

𝜙 + 1 ,
1

𝜌
}

(3.1)

Figure 3.8 plots the theoretical worst-case delay per QoS level in a 2-QoS scenario. There are
two main takeaways from the above formulation. First, QoS-mix affects delay in both QoS classes.
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As QoS distribution changes, delay from both classes experience different regions. Second, at a
certain share of QoSℎ, we observe priority inversion where delay in QoSℎ exceeds that of QoS𝑙 .

Due to the increased complexity of closed-form delay equations, we extend the analysis to more
number of QoS classes via empirical analysis in simulation. Figure 3.9 plots the simulated results
of a WFQ with 3 QoS levels. As before, the QoS-mix plays an important role in the delay profile
among all the QoS levels. Shaded area represents delay regions with no priority inversion.

3.4.2 Controlling QoS-Mix for RNL SLOs

The above set of equations show that the delay bound depends on a few different parameters
including QoS-mix, QoS weights, and burstiness. We characterize two lemmas to conclude that
controlling QoS-mix ties directly to delay-bounds, which along with the bandwidth guarantees
provided by WFQs is effective in providing RNL SLOs.

Lemma 1. When the demand for each QoS class (𝑎𝑖) exceeds its minimum guaranteed rate (𝑔𝑖),
the QoS-share thresholds for priority inversion are a function of QoS weights. Priority inversion
happens when the delay in a higher QoS exceeds the delay in a lower QoS. In the case where the
demand for each QoS class (𝑎𝑖) exceeds its minimum guaranteed rate (𝑔𝑖), it takes longer to process
the traffic in QoS𝑖 versus QoS𝑖+1. The processing time is proportional to 𝑎𝑖/𝜙𝑖, i.e.,

𝑎1/𝜙1 ≤ 𝑎2/𝜙2 ≤ ... ≤ 𝑎𝑁/𝜙𝑁 . (3.2)

For the two QoS case, this implies QoSℎ and QoS𝑙 ,

𝑎ℎ

𝑔ℎ
≤ 𝑎𝑙
𝑔𝑙
,
𝑥

𝜙
≤ 1 − 𝑥

1
=⇒ 𝑥 ≤ 𝜙

𝜙 + 1

Thus, the values for QoS weights determine the boundary of a region of operation outside which
priority inversion occurs. We define it as the admissible region, formally as the region where each
point satisfies

∀𝑘 ∈ {1, 2, ..., 𝑁 − 1}, 𝑑𝑒𝑙𝑎𝑦_𝑏𝑜𝑢𝑛𝑑𝑘 ≤ 𝑑𝑒𝑙𝑎𝑦_𝑏𝑜𝑢𝑛𝑑𝑘+1 (3.3)

with 𝑁 QoS classes; lower indices indicating higher priority. Figure 3.9 shows that when we
increase the weight of QoSℎ to 50, the priority inversion points (and hence the admissible region)
move to the right, albeit at the cost of higher delay bounds for QoS𝑚.

Lemma 2. While increasing QoSℎ weight 𝜙 helps admit more QoSℎ traffic with zero delay,
beyond QoSℎ-share exceeding 1

𝜌
, delay is independent of QoS weights. As 𝜙 increases, the domain

of case 1 in Eq 3.1 grows and approaches 1
𝜌

as 𝜙 keeps increasing. In fact, based on Eq 3.1, when
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𝜙 goes to infinity, QoSℎ delay expression becomes

𝐷𝑒𝑙𝑎𝑦ℎ (𝑥) =

0, 𝑥 ≤ 1

𝜌

𝜇(𝑥 − 1

𝜌
), 1

𝜌
< 𝑥 ≤ 1

(3.4)

Taking the two lemmas together, we observe while QoS weights are an important parameter to
increase the amount of traffic permitted at a given delay bound, it is controlling the QoS-share
that is effective in providing the delay bounds in the first place. This property directly motivates a
key part of Aequitas’ design – control utilization at a given QoS via admission control. We also
note that as 𝜙 increases, the equations approach the single-QoS scenario where the only way to
control delay is to control the amount of admitted traffic. Furthermore, the core idea of controlling
QoS-mix enables cloud operators to select SLOs from the profiles of latency versus QoS-mix.

Aligning RPC priority to network QoS with WFQ scheduling and controlling the amount of
traffic admitted to individual QoS classes are the core principles of Aequitas design which we
describe in the next section.

3.5 System Design

The overall design for Aequitas follows naturally from the analysis above and consists of two
sequential phases amenable to incremental deployment. In this chapter, we focus on presenting the
key design ideas without going into details about how Aequitas is implemented in the RPC stack
and the transport stack internally at our clusters, which are beyond the scope of this chapter.
Phase 1: Align Network QoS with RPC priority Most datacenter applications have a clear notion

of RPCs that are 𝑃𝐶, 𝑁𝐶, and 𝐵𝐸 . Classifying an entire application or a job into a single priority
class is too coarse-grained; transport level flows can be both coarse and fine grained, e.g., consider
the issue we face with multiplexing multiple RPCs onto a single TCP connection; packet level is
needlessly fine-grained and loses application-level semantics. As a first step to providing RNL
SLOs, Aequitas maps, at the granularity of RPCs, the three priority classes bĳectively to three QoS
classes served with WFQ-scheduling: 𝑃𝐶 RPCs to QoSℎ, 𝑁𝐶 to QoS𝑚, and 𝐵𝐸 to QoS𝑙 . Aequitas
provides SLOs for QoSℎ and QoS𝑚; QoS𝑙 is treated as a scavenger class on which best-effort and
downgraded traffic is served and offers no SLOs. The design organically extends to larger numbers
of QoS priority classes.

Phase 2: Distributed Admission Control via QoS downgrade to provide RNL SLOs Aequitas
uses a distributed algorithm implemented completely at sending hosts to decide, at the RPC
granularity, whether to admit a given RPC on the requested QoS by controlling an admit probability.
This controls the portion of RPCs admitted across QoS levels in order to meet RNL SLOs. In a
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departure from traditional mechanisms of admission-control that either drop or rate-limit traffic,
Aequitas downgrades the unadmitted RPCs and issues them at the lowest QoS level. The algorithm
follows an Additive Increase Multiplicative Decrease (AIMD) control.

3.5.1 Distributed Admission Control

At its core, Aequitas is a distributed admission control system for RPCs implemented completely
at sending hosts utilizing a novel mechanism of QoS-downgrade enabled by WFQs commonly
available in commodity switches.

Probabilistic admission of RPCs: Central to Aequitas’ distributed algorithm is an admit proba-
bility denoted by 𝒑𝒂𝒅𝒎𝒊𝒕 that each RPC channel maintains on a per-(src-host, dst-host, QoS) basis;
Aequitas probabilistically admits RPCs on a given QoS based on 𝑝𝑎𝑑𝑚𝑖𝑡 , which Aequitas controls as
per Algorithm 2. Note that if an RPC is downgraded, it is explicitly notified to the application via
an additional field in RPC metadata (lines 10-11). This notification is important for two reasons:
(i) the application sees network overload and QoS downgrades directly, and (ii) when not all RPCs
can be admitted on the requested QoS, the application has the freedom to control which RPCs are
more critical and issue only those at higher QoS to prevent downgrades. How applications exactly
use the downgrade information is outside the scope of this chapter.

The key idea behind the algorithm is simple. At each source host, for each RPC channel, Aequitas
collects measurements of RPC network latencies (RNL as described in §3.2.2.1) per destination
host and QoS level to capture the delays incurred by both network overload and congestion control
backoff. These measurements serve as the primary signal to adjust 𝑝𝑎𝑑𝑚𝑖𝑡 . If the latency is within
the target, 𝑝𝑎𝑑𝑚𝑖𝑡 is increased, otherwise it is decreased. We find that such a probabilistic approach
has two main advantages: (i) admit probability translates directly to determine the portion of RPCs
that needs to be downgraded to control the amount of admitted traffic, and (ii) it is simple to
reason about in terms of a fair and efficient distributed algorithm as we describe below. We note
similarities to AQM schemes [78, 175] that also perform probabilistic admission control albeit at
the packet level; Aequitas does so at the granularity of RPCs.
AIMD on admit probability: AIMD as a feedback control algorithm has been widely used to
provide fair and efficient utilization of resources both in theory and in practice [101, 49]. Aequitas’
usage of AIMD has several important differences compared to how other systems use AIMD.
Additive increase: Aequitas increases 𝑝𝑎𝑑𝑚𝑖𝑡 if the observed RNL is below the target, restricted
to one update per 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡_𝑤𝑖𝑛𝑑𝑜𝑤 (lines 15-18). The rationale is that for fairness, the in-
crement in 𝑝𝑎𝑑𝑚𝑖𝑡 should be agnostic to how many RPCs each channel is sending. The value of
𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡_𝑤𝑖𝑛𝑑𝑜𝑤 depends on the percentile at which the SLO is defined, e.g., if the SLO is de-
fined at the 99.9𝑡ℎ-𝑝, the 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡_𝑤𝑖𝑛𝑑𝑜𝑤 is higher than the case where it is at the 99𝑡ℎ-𝑝—the
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Algorithm 2: QoS Downgrade Algorithm
1 Notation:

𝜶: additive increment, 𝜷: multiplicative decrement,
𝒕𝒂𝒓𝒈𝒆𝒕_ 𝒑𝒄𝒕𝒍: target percentile of tail latency, 𝑵: total number of QoS levels, 𝒑𝒓𝒊𝒐𝒓𝒊𝒕𝒚: RPC priority
class specified by the application, 𝒔𝒊𝒛𝒆: size of an RPC in number of MTUs.

2 Initialization:
for 𝑖 ← 1 to 𝑁 − 1 do

3 𝑝_𝑎𝑑𝑚𝑖𝑡 [𝑖] = 1

4 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡_𝑤𝑖𝑛𝑑𝑜𝑤 [𝑖] = 𝑙𝑎𝑡𝑒𝑛𝑐𝑦_𝑡𝑎𝑟𝑔𝑒𝑡 [𝑖] · 100
100−𝑡𝑎𝑟𝑔𝑒𝑡_𝑝𝑐𝑡𝑙 [𝑖 ]

5 On RPC Issue (𝑟 𝑝𝑐, 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦):
6 𝑄𝑜𝑆𝑟𝑒𝑞 ← 𝑀𝑎𝑝𝑃𝑟𝑖𝑜𝑟𝑡𝑦𝑇𝑜𝑄𝑜𝑆(𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦)
7 if 𝑟𝑎𝑛𝑑 () ≤ 𝑝_𝑎𝑑𝑚𝑖𝑡 [𝑄𝑜𝑆𝑟𝑒𝑞] then
8 𝑄𝑜𝑆𝑟𝑢𝑛 ← 𝑄𝑜𝑆𝑟𝑒𝑞
9 else

10 𝑄𝑜𝑆𝑟𝑢𝑛 ← 𝑄𝑜𝑆𝑙𝑜𝑤𝑒𝑠𝑡

11 𝑟 𝑝𝑐.𝑖𝑠_𝑑𝑜𝑤𝑛𝑔𝑟𝑎𝑑𝑒𝑑 ← 𝑇𝑟𝑢𝑒

12 𝑅𝑃𝐶_𝑆𝑡𝑎𝑟𝑡 (𝑟 𝑝𝑐, 𝑄𝑜𝑆𝑟𝑢𝑛)
13 On RPC Completion (𝑟 𝑝𝑐_𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑠𝑖𝑧𝑒, 𝑄𝑜𝑆𝑟𝑢𝑛):
14 𝑘 ← 𝑄𝑜𝑆𝑟𝑢𝑛
15 if 𝑟 𝑝𝑐_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 / 𝑠𝑖𝑧𝑒 < 𝑙𝑎𝑡𝑒𝑛𝑐𝑦_𝑡𝑎𝑟𝑔𝑒𝑡 [𝑘] then

⊲ Additive Increase
16 if now − t_last_increase[k] > increment_window[k] then
17 𝑝_𝑎𝑑𝑚𝑖𝑡 [𝑘] ← min(𝑝_𝑎𝑑𝑚𝑖𝑡 [𝑘] + 𝛼, 1)
18 𝑡_𝑙𝑎𝑠𝑡_𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒[𝑘] ← 𝑛𝑜𝑤

19 else ⊲ Multiplicative Decrease
20 𝑝_𝑎𝑑𝑚𝑖𝑡 [𝑘] ← max(𝑝_𝑎𝑑𝑚𝑖𝑡 [𝑘] − 𝛽 · 𝑠𝑖𝑧𝑒, 𝑓 𝑙𝑜𝑜𝑟)

algorithm is more conservative in increasing the admit probability when the SLO is for a higher
tail.
Multiplicative decrease: If the RPC misses the specified SLO, 𝑝𝑎𝑑𝑚𝑖𝑡 is decreased by a constant
amount per SLO miss (lines 19-20). Aequitas achieves fairness across RPC-channels. For this,
when overload occurs, a channel sending more RPCs incurs a larger decrease in its 𝑝𝑎𝑑𝑚𝑖𝑡 versus
a channel sending fewer RPCs. We utilize RPC-level clocking to achieve this: the constant
decrement in the admit probabilities implies that the overall decrease in a given time interval
becomes proportional to the RPCs on the channel that miss the SLO.5 We set a threshold below
which 𝑝𝑎𝑑𝑚𝑖𝑡 does not further decrease. This is to prevent starvation – when the admit probability
drops to zero, no new RPCs get admitted on the requested QoS, resulting in no further latency
measurement for the admit probability to grow. Detailed evaluation of how the algorithm achieves
fairness and efficiency is in §3.6.5.

5An implication of this is if a channel’s rate of RPCs is within its fair share, its admit probability will converge to
1.0.
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By applying the above AIMD policy on the admit probability, Aequitas is able to control the
rates of issuing RPCs in a fair and efficient way, and converge to a stable QoS-mix with which
the given set of SLOs are precisely maintained. As we will show in §3.6.3, this leads to close to
maximal admitted traffic while maintaining SLO-compliance.

Handling different RPC sizes: We make two augmentations to the algorithm to handle different
RPC sizes. First, the 𝑙𝑎𝑡𝑒𝑛𝑐𝑦_𝑡𝑎𝑟𝑔𝑒𝑡 is specified as a normalized SLO on an MTU basis, enabling
larger RPCs to have a higher absolute RNL target. Second, the multiplicative decrease is made
proportional to the size of the RPC, such that an SLO miss on, say, a 10-packet RPC behaves
similarly to SLO misses on ten 1-packet RPCs. In other words, irrespective of the sizes of the
RPCs, Aequitas will converge to its fair share.

3.5.2 SLO Guarantees and Robustness

The trifecta of aligning priorities, providing per-QoS SLOs (except the lowest QoS), and admis-
sion control to maintain a QoS-mix enables a systematic use of datacenter QoS and incentivizes
applications to be well-behaved when using higher QoS.

A naive way of meeting SLOs is to admit a very small number of RPCs on each QoS. However,
Aequitas aims to maximize the traffic that is admitted (performance-criterion) while retaining SLO-
compliance (correctness-criterion). Additionally, we can show that in our theoretical model, at
least 𝑟 𝜙𝑖∑

𝜙

𝜇

𝜌
traffic is admitted in QoS𝑖 except for the lowest QoS To see why this is true, consider

the model in §3.4.1. Denote 𝑋𝑖 as the average rate that will at least be admitted in 𝑄𝑜𝑆𝑖 under
Aequitas. Given 𝑋𝑖, the maximum instantaneous rate on 𝑄𝑜𝑆𝑖 can be represented as 𝑋𝑖 𝜌𝜇 . When
the arrival rate does not exceed its minimum guaranteed rate, there cannot be any delay on 𝑄𝑜𝑆𝑖
(Appendix B.2.1 has a formal proof on this), and all traffic is admitted. Thus, if the maximum
instantaneous arrival rate for 𝑄𝑜𝑆𝑖 is less than 𝑔𝑖, 𝑋𝑖 is guaranteed to be admitted:

𝑋𝑖
𝜌

𝜇
≤ 𝑔𝑖 = 𝜙𝑖∑

𝜙
𝑟, 𝑋𝑖 ≤ 𝑟 𝜙𝑖∑

𝜙

𝜇

𝜌

with any additional SLO resulting in a larger value of 𝑋𝑖. Note that the guaranteed share is inversely
proportional to the traffic burstiness and we evaluate this aspect in §3.6.4.

It is important to note that while Aequitas provides latency SLOs for all admitted RPCs, it does
not guarantee the amount of traffic admitted on a per-application or per-tenant basis–wherein the
admitted traffic depends on the number of co-existing applications/tenants, as Aequitas shares the
per-QoS bandwidth. One can augment Aequitas to provide application/tenant traffic rate guarantees
with a centralized RPC quota server, and we leave this for future work.
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3.6 Evaluation

Our evaluation consists of event-driven simulation, testbed experiments, and results from production
deployment. The focus is on two aspects, first is to see if Aequitas remains SLO-compliant by
controlling the 99𝑡ℎ-𝑝 (or 99.9𝑡ℎ-𝑝) RNL which is our correctness criterion, and second is whether
Aequitas admits close to ideal amount of traffic irrespective of the input traffic mix which serves
as the main performance criterion. We evaluate these and additional aspects such as fairness and
convergence over different topologies, RPC size distributions—both synthetic and from production,
traffic patterns and burstiness. All results are at 100Gbps link rates.

3.6.1 Simulator

We use a packet-level simulator6 built atop YAPS [127], augmenting it with WFQ scheduling in
switch queues, Swift [125] congestion control, and an RPC stack where Aequitas is implemented.
Our open source simulator also serves as a tool for datacenter operators to help define the admissible
region and set the right SLOs. Unless otherwise specified, we use an 𝛼 value of 0.01 and a 𝛽 value
of 0.01 per MTU (note the size-based adjustment to multiplicative decrease in Algorithm 2).

Validation: We validate the correctness of the simulator by replaying the theoretical 2-QoS
scenario that was shown in Figure 8. Congestion control is disabled and the buffer size is set to a
large value to closely match the theoretical model. We show the results in Figure 3.10 and observe
that the simulator results precisely track the theory including priority inversion points and delay
values barring QoS𝑙’s delay, which is slightly higher in the simulation. We believe that this is a
result of the packet nature of the simulator versus the fluid model used in theory.

Two experiment setups are common in our simulator-evaluation: (1) a 3-node setup where
two clients send RPCs to the same destination server for microbenchmarks, and (2) a 33-node or
144-node setup with an all-to-all traffic pattern where each host sends RPCs to the other hosts
with an average and burst load of 0.8 and 1.4 respectively (similar to Figure 3.7) with Poisson
arrivals. Setups that differ from above are described for corresponding experiments. QoS weights
for experiments with 2-QoS levels are set at 4:1 and with 3-QoS levels are set at 8:4:1.

3.6.2 SLO Compliance

To evaluate how closely Aequitas’ distributed admission control tracks per-QoS RNL SLOs, we
start with the 3-node topology where two RPC channels, each running on a different host, issue
32KB WRITE RPCs on QoSℎ to a destination server. To make the network persistently overloaded,
each host issues RPCs at line rate with 70% of its RPCs at 𝑄𝑜𝑆ℎ and 30% of its RPCs at 𝑄𝑜𝑆𝑙 .

6https://github.com/SymbioticLab/Aequitas
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Figure 3.12: Aequitas significantly improves RNL, closely tracking the SLOs.

Figure 3.11 shows that Aequitas tracks the SLO target in terms of the 99.9𝑡ℎ-𝑝 RNL for 𝑄𝑜𝑆ℎ
extremely well as it is varied from 15𝜇s to 60𝜇s. The tradeoff between SLO targets and admitted
traffic is also evident, with stricter SLOs resulting in fewer RPCs admitted on QoSℎ.

We move onto the 33-node setup to illustrate that Aequitas preserves its ability to closely track
RPC latency SLOs under different communicate patterns at a larger scale. We set the input QoS-mix
of (QoSℎ, QoS𝑚, QoS𝑙) to be (0.6, 0.3, 0.1) and show the achieved RNL at the 99.9𝑡ℎ-𝑝 w/ and w/o
Aequitas with the SLOs selected as 15𝜇s and 25𝜇s for𝑄𝑜𝑆ℎ and𝑄𝑜𝑆𝑚, respectively, in Figure 3.12.
We treat QoS𝑙 as the scavenger class as discussed in §3.5.

An interesting, and perhaps surprising, observation is that with Aequitas, the RNL of 𝑄𝑜𝑆𝑙
reduces as well, i.e., Aequitas is not a zero-sum game for per-QoS latencies. The reasoning
behind this is similar to the result in Reference [36] where all jobs can improve their performance
with right prioritization. Given the improved RNL for 𝑄𝑜𝑆ℎ and 𝑄𝑜𝑆𝑚, RPCs in 𝑄𝑜𝑆𝑙 have fewer
RPCs to contend with, which as per Little’s Law [138] implies that they will finish quicker as well.
To verify, we collect the number of outstanding RPCs and show in Figure 3.13 that the decrease in
instantanous outstanding RPCs in QoSℎ + QoS𝑙 indeed outweighs the increase in QoS𝑙 outstanding
RPCs, especially at the tail.
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3.6.3 Maximizing Admitted Traffic within SLOs

While SLO-compliance is the main correctness criterion, it can be met trivially by admitting a
tiny amount of traffic. We show that Aequitas admits close to maximal traffic while retaining
SLO-compliance, irrespective of the input QoS-mix.

To figure out the maximal admissible traffic associated with a given SLO, we measure 99.9𝑡ℎ-𝑝
RNL in the 33-node setup without Aequitas as we vary QoSℎ-share from 5 to 70%, keeping QoS𝑚
at 25% and allotting the rest to QoS𝑙 , as shown in Figure 3.14. We set the SLO for QoSℎ at 15𝜇s
which corresponds to QoSℎ-share of 25%, and SLO for QoS𝑚 at 25us. Thus, in this setup, 25% is
the maximal amount of traffic we can admit as admitting any more traffic will violate the correctness
criterion of SLO-compliance. We then vary the input QoS-mix and plot both RNL and admitted
QoS-mix in Figure 3.15. We can see that Aequitas converges closely to the maximal QoSℎ-share
while retaining SLO-compliance.

Further, we observe that Aequitas’ algorithm is self-consistent, i.e., if the input QoS-mix is same
as target, then very little traffic gets downgraded. The corollary of this result is that Aequitas
helps solve the race to the top problem defined in §3.2.3 by effectively controlling the QoS-mix
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independent of the input distribution.

3.6.4 Impact of Burstiness on Admitted Traffic

As we discussed in in §3.5.2, for a given set of SLOs, as burstiness of the traffic increases, the
amount of traffic for which those SLOs can be provided for decreases. In Figure 3.16, we vary
the burst load, 𝜌, and plot the QoSℎ-share that Aequitas admits. While the simulation differs from
the theoretical model in many ways such as packet-level behavior and congestion-control, we can
observe, via the fitted curve in the plot, the inverse proportionality of admitted traffic w.r.t. burst
load as per the theoretical formulation.

3.6.5 Fairness

Besides providing SLO guarantees, fairness is also a key goal in Aequitas’ admission control. To
evaluate if Aequitas ensures fairness across RPC channels, we modify the 3-node experiment in
§3.6.2 such that Channel 𝐴 issues 40% of its RPCs on𝑄𝑜𝑆ℎ (equivalent to 40 Gbps worth of RPCs
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Figure 3.17: Admit probability and throughput of two RPC channels sending 80Gbps and 40Gbps
QoSℎ traffic with QoSℎ SLO set to 15𝜇s.
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Figure 3.18: Aequitas maintains a near 1.0 admit probability for in-quota RPC channels that have
demand less than fair-share. Excess quota is reclaimed by other channels to provide max-min
fairness.

at 100Gbps link as the per-channel load is 1.0) whereas Channel 𝐵 issues 80% of its RPCs on𝑄𝑜𝑆ℎ.
We set QoSℎ SLO to be 15𝜇s such that fairness implies that each channel gets 20% of its RPCs
admitted to 𝑄𝑜𝑆ℎ and the rest downgraded. Figure 3.17 shows that Aequitas achieves fairness by
converging to different values of admit probability for each individual channels.

Another important aspect regarding fairness is how Aequitas behaves when a channel is operating
within its quota, i.e., its demand for 𝑄𝑜𝑆ℎ is below its fair-share. The expectation is that such a
well-behaved RPC channel experiences minimal to no downgrades while continuing to meet the
SLOs. We modify the above experiment in that Channel 𝐴 issues only 10% of its RPCs on 𝑄𝑜𝑆ℎ
(lower than its fair share of 20%) and plot the admit probabilities and achieved throughput in
Figure 3.18. We find that Aequitas not only maintains admit probability of Channel 𝐴 close to 1.0,
it also allows Channel 𝐵 to reclaim the excess, providing max-min fairness. We observe Channel
A is able to consistently achieve a throughput of 10Gbps with 1𝑠𝑡-𝑝 𝑝𝑎𝑑𝑚𝑖𝑡 = 0.82.
𝛼 and 𝛽 are key parameters in that they posit a tradeoff between SLO-compliance and stability.
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Figure 3.19: Aequitas compares with Strict Priority Queuing (SPQ) in providing SLO guarantees.

Results of a sensitivity analysis on 𝛼 and 𝛽 can be found in Appendix B.3.

3.6.6 Convergence Time

Convergence time affects how quickly Aequitas’ algorithm achieves max-min fair-sharing amongst
channels while ensuring SLO-compliance. Convergence time for both channels is 10ms in Fig-
ure 3.17 and 3ms in Figure 3.18. As above, 𝛼 and 𝛽 are key parameters here and we choose them
to favor SLO-compliance.

3.6.7 Comparison with Strict Priority Queuing

Although strict priority queuing (SPQ) is not widely deployed in many production networks, it is
widely used in literature to implement optimal scheduling such as SRPT [25, 160]. We evaluate
how using SPQ alone handles network overloads by applying the same setting in our 33-node
setup and replacing the underlying WFQs with SPQs. We fix the QoS𝑚 distribution at 20% and
increase the percentage of QoSℎ traffic as shown in Figure 3.19. We observe SPQ fails to maintain
predictability as more applications mark their RPCs as QoSℎ; meaning, it does not resolve the race
to the top problem.

3.6.8 Handling Different RPC Sizes

We now evaluate how Aequitas handles different RPC sizes as discussed in §3.5.1. We conduct an
experiment where half the channels continue to issue 32KB RPCs while the other half issue 64KB
RPCs. Figure 3.20 shows that Aequitas continues to meet the normalized RNL SLOs with different
RPC sizes.
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Figure 3.21: Aequitas’ performance in a large (144-node) topology with production RPC sizes.

3.6.9 Large-Scale Eval with Production RPC Sizes

We evaluate Aequitas at a larger scale in a simulated 144-node topology, with RPC sizes taken
from production, under extreme overload where we increase the burst load such that the maximum
instantaneous load on the link is 25× its capacity. Figure 3.21 shows that Aequitas improves tail
RNL in QoSℎ/QoS𝑚 by 3.7×/2.2× in this workload, continuing to meet RNL SLOs even under
extreme overloads that can occur in production. We observe 20ms convergence time before the
99.9𝑡ℎ-𝑝 latency becomes stable.

3.6.10 Comparison with Related Works

We compare Aequitas with four related systems, pFabric [25], QJump [89], D3 [219], PDQ [96],
and Homa [160], each with a complete implementation in our packet-level simulator. We use our
production RPC size distribution with 50%/30%/20% input QoS-mix in the 33-node setup. We start
with normalized SLO targets; for D3 and PDQ, which do not consider RPC sizes in their design,
these translate to 250us and 300us deadlines for QoSℎ and QoS𝑚 RPCs based on the average of
production RPC-size distribution, respectively.
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We record per-QoS 99.9𝑡ℎ-𝑝 RNL and percentage of traffic that meet the SLO targets from their
initially assigned QoS levels. We also record network utilization, which we define as the achieved
goodput divided by the maximum goodput based on the input arriving rate. Figure 3.22 summarizes
the results and we make the following observations. First, Aequitas achieves the highest amount
of traffic meeting SLO targets (QoS𝑚 results, not shown, are similar). Second, Aequitas achieves
better 99.9𝑡ℎ-𝑝 RNL for QoSℎ and QoS𝑚 than pFabric and QJump, which are SLO-unaware. D3

and PDQ observe good performance on RNL, however, a lower percentage of traffic meets the
SLO targets / deadlines. This is because both D3 and PDQ terminate an RPC early when it cannot
meet its deadline, which also lowers network utilization down to nearly 50%. pFabric favors short
RPCs using SRPT scheduling, but doesn’t meet SLO targets for large RPCs, which can be equally
important. Homa also adopts SRPT, but its usage of dynamic in-network priorities favors even more
applications’ small RPCs, leaving more large RPCs’ SLO goals to be ignored. QJump provides
good performance at the packet level by rate-limiting higher QoS traffic at end-hosts, however at
RPC level, Aequitas’ performance is better both in terms of RNL and percentage of traffic meeting
SLOs.

3.6.11 Testbed Evaluation

Our prototype implementation of Aequitas is built in a production RPC stack, and it incorporates
both Phase 1 and Phase 2 of Aequitas’ design. Aequitas’ algorithm computes an admit probability
per RPC channel, which is mapped to multiple per-QoS TCP sockets. On RPC completion, the
RNL measurement is fed into the Aequitas’ algorithm.

We deployed the prototype in a 20-machine testbed with 100Gbps NICs connected to a single
switch that supports ∼10 QoS queues with configurable weights. We set the QoSℎ:QoS𝑚:QoS𝑙
weights to 8:4:1. Each machine issues 32KB WRITE RPCs to other machines in an all-to-all
communication pattern. To circumvent the issues in RNL measurements described in §3.2.2.1, we
provision enough CPU such that the elevated network-latency measurement is purely a result of
network overload.

Figure 3.23 shows the RNL SLOs and QoS-mix w/ and w/o Aequitas. The setup is similar to
§3.6.3 with 3 QoS levels and an input QoS-mix at (0.5, 0.35, 0.15). The SLOs are set as per a
QoS-mix of (0.2, 0.3, 0.5). For confidentiality reasons, we show normalized7 RNL measurements
and find that Aequitas meets its promise of achieving SLO targets.

7We normalize each QoS level with their observed 99.9𝑡ℎ-𝑝 RNL when input QoS-mix is same as the target
QoS-mix (0.2, 0.3, 0.5).
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Figure 3.22: Aequitas compared with related works in the simulated 33-node setup with production
RPC size distribution.
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Figure 3.23: Result from testbed implementation shows that Aequitas maintains SLO compliance
and converges to the target QoS-mix.

3.6.12 Results from Production Deployment

We now present results from Aequitas’ production deployment with a focus on Phase 1 deployment.
Phase 2 results are not ready to be collected as the chapter is written. Figure 3.24 shows the results
(collected from a random sampling of 50 clusters) from our fleet-wide deployment of Phase 1, with
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Figure 3.24: Production deployment of Phase 1 of Aequitas shows improvement in QoS-
misalignment and 99th-p RNL.

two important metrics:
1) Misalignment percentage between RPC-priority and QoS, i.e., percentage of 𝑃𝐶 RPCs flowing

in QoS𝑙 and QoS𝑚 queues, 𝑁𝐶 RPCs flowing in QoSℎ and QoS𝑙 queues, and 𝐵𝐸 RPCs flowing in
QoSℎ and QoS𝑚 queues. Aequitas brings misalignment down from up to 80% to nearly zero.

2) Aequitas achieves up to 53% reduction in 99𝑡ℎ-𝑝 RNL for high priority traffic. RNL was
measured as described in §3.2.2.1 for Storage READ and WRITE RPCs. A small number of
clusters showed a minor regression primarily because of initial highly skewed QoS distribution,
competing traffic that is not yet aligned through Aequitas, and changes in traffic pattern during the
measurement window.

3.7 Related Work

Packet Scheduling: Packet scheduling is a classic networking topic that focuses on different
variations of weighted fair queuing (WFQ) in switches, routers, and middleboxes [65, 176, 38,
85, 88, 199, 217, 162]. Aequitas builds upon this pioneering work and extends the analysis by
exploring the interactions among QoS levels as well as WFQ’s admissible regions to provide SLOs
for higher-priority RPCs. Centralized packet arbitration solutions [177, 171] could provide latency
guarantees, but are difficult to deploy at scale in datacenters.
Flow and Coflow Scheduling: Flow scheduling algorithms in datacenters focus on minimizing the
average or tail flow completion time (FCT), typically by prioritizing short flows [25, 33, 80, 160, 76].
Aequitas works at the RPC granularity, provides guaranteed SLOs for RPC network-latency, and
uses WFQ mechanism versus strict priority. Coflow scheduling minimizes the average coflow
completion time (CCT) instead of FCT [53, 52, 67, 21], but it does not capture RPC semantics
either.
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Network Calculus-Based Scheduling: Network calculus has been widely used as a tool to provide
worst-case latency guarantees by many related works [208, 59, 191, 104, 235, 233, 234]. However,
none highlighted the interactions between QoS levels and the possibility of priority inversion.
PriorityMeister [235], SNI-Meister [233], and WorkloadCompactor [234] target tail latency SLOs,
but they all base their analysis on SPQ and rely on prior knowledge of stationary traffic traces.
AQM and QoS Solutions: Active Queue Management (AQM) performs admission control
by probabilistic dropping at the packet layer to prevent congestion under over-subscription while
approximating fairness [78, 175, 174, 225, 167]. Aequitas uses a similar probabilistic admission
control, but at the layer of RPCs. QoS-based solutions such as IntServ [220] and DiffServ [41]
provide applications better service relative to 𝐵𝐸 traffic running on the Internet. Aequitas is similar
to DiffServ in that it also differentiates traffic at the edges as per their priority, but focuses on
datacenter environments to provide guaranteed latency SLOs for RPCs.
Congestion Control: Datacenter congestion control solutions have focused on quickly achiev-
ing max-min fairness with or without hardware support and using edge-based (delay-based) and
network-supported (e.g., using ECN or programmable switch) mechanisms [24, 238, 135, 156, 125,
160]. Aequitas, which operates at the RPC layer, relies on a well-functioning congestion control
algorithm at the transport layer to keep switch buffer occupancy small, alleviate packet-losses, and
fully utilize available bandwidth.
Network Bandwidth Sharing: Over the last decade, another prominent direction of research has
been network bandwidth sharing in public and/or private clouds [51, 91, 106, 197, 179, 34, 35,
180, 162]. Similar solutions at the WAN level include, among others, BwE [124] and SWAN [97].
Aequitas differs from these efforts by focusing on providing isolation in terms of RPC latency to
critical RPCs.
Server-Side RPC Overload Management: Another line of work is to provide overload man-
agement at the layer of RPCs or request/responses but focuses on server-side overload such as
CPU contention [50, 218, 232, 79]. Aequitas complements such schemes by focusing on network
overload, providing guarantees on RPC network-latency.

3.8 Conclusion

Today, developers running in shared multi-tenant cloud environments have no effective way to
provide RPC latency SLOs. In this chapter, we take an important step toward this higher-level goal
by providing a first solution for SLOs for the network component of RPC latency. We present the
design, implementation, and evaluation of Aequitas, built around the observation that dynamically
mapping RPCs to widely-available network QoS classes can bound RPC network-latency in a shared
environment with no centralized control. We employ Network Calculus-based analysis to set the
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ratio of RPCs admitted into the network at different priority levels with the goal of guaranteeing
quantitative tail latency targets for all priority classes except for the lowest (best-effort) class. We
hope our work will inspire other techniques to comprehensively deliver RPC latency SLOs as a
fundamental building and reasoning block for distributed systems developers. On the theoretical
side, we leave an open question: what are the closed-form delay equations for an arbitrary number
of QoS levels, if any? Solving this challenge, or proving non-existence of such generalization, will
provide valuable insights in designing future QoS-aware systems.
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CHAPTER 4

Vulcan: Automatic Query Planning for Live ML
Analytics

Both Justiita and Aequitas explored QoS inside the datacenter. We now further extend our QoS
research interests from within the datacenter into applications that span both datacenter and edge
devices. This chapter introduces Vulcan, a system we build to provide better QoS when serving
live ML analytics. It turns out that serving live ML analytics is not an easy task, and it involves
many steps with room for optimization. This leads to another challenge we face in this work –
optimization cost in the course of finding the optimal solution, besides the goal of better QoS with
high utilization.

The remaining of this chapter is organized as follows. Chapter 4.1 introduces Vulcan. Chap-
ter 4.2 describes the existing workflow of how live ML queries are served, and why they need better
QoS support. Chapter 4.3 and Chapter 4.4 describe the system overview and design details of
Vulcan. How Vulcan performs online adaptation for deployed queries are described in Chapter 4.5.
We then discuss our evaluation results in Chapter 4.6, followed by a discussion of existing research
in Chapter 4.7 and a conclusion on Vulcan in Chapter 4.8.

4.1 Introduction

Recent years have witnessed a growing demand for machine learning (ML) analytics. Live ML
analytics – with applications in edge-assisted autonomous driving [196, 227, 228], live traffic
analysis [6, 143], and real-time speech recognition [10, 55] – stands out due to its large-scale
deployments [6, 8, 7]. Live ML analytics involves ML pipelines at its core, where each pipeline
consists of a series of operators to perform specific ML tasks. For example, an autonomous driving
perception query that detects surrounding objects of an autonomous vehicle may contain filtering
operators for road surface removal [86] and 3D data compression [169, 82], along with a 3D object
detector to perform object detection [130, 223].
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Live ML analytics differentiates itself from ML on stored data in two key characteristics. First,
live ML pipelines are deployed across heterogeneous infrastructure, spanning multiple tiers such as
device edges, on-premise edges, public MEC, and cloud datacenters [6, 8, 9, 12]. Second, live ML
queries have latency requirements besides accuracy targets as the analytics is based on real-time
data. Some analytics, such as object detection in autonomous vehicles, may have more stringent
requirements than others depending on the priority of the task. Therefore, before deploying live ML
analytics, each query describing the ML task must go through careful query planning. Specifically,
this involves (i) constructing the pipeline by selecting a series of operators and ordering them;
(ii) determining the physical placement of pipeline operators across infrastructure tiers; and (iii)
selecting configurations of the pipeline operators, to optimize for query performance. A joint
optimization of the three aspects is required for optimal performance and resource consumption.

Recent research on these topics have been piecemeal, focused on compute alone, and hence
largely sub-optimal for live ML analytics. Although declarative query languages (e.g., SQL) have
been proposed for ML queries, there exists no systematic approach to automatically construct
pipelines based on query’s end-to-end latency requirement. This includes selecting and ordering
the filtering modules during pipeline construction, which have a great impact on the performance
characteristics of ML pipelines. Furthermore, when choosing physical placement of pipeline
components, one cannot afford to exhaustively search for the optimal placement through real-world
deployments. As a result, deployments often rely on past experience with simple heuristics [221, 9].
While recent solutions have focused largely on selecting query configurations [226, 107, 39, 198,
103], they assume the ML analytics component to be a monolithic module instead of a pipeline. As
such, they are profiled for compute alone, assuming they are running in a homogeneous datacenter.
In the process, networking resources are ignored, and the complexities of multi-resource planning
of compute and network are overlooked altogether. Finally, these solutions rely heavily on domain-
specific insights of video content, which are not applicable to general ML scenarios beyond video
analytics [226, 107, 145].

After deploying the query in the wild, one must also adapt the query plan based on runtime
dynamics such as data content and/or resource changes [168, 39, 107, 172]. Prior solutions in
providing online adaptation [107, 226] focus on data content changes alone but do not adapt to
compute and network resource changes, which are common in edge environments [168]. An ideal
solution should change query configuration and placement during online adaption.

In this work, we consider how to perform automatic query planning – i.e., constructing, placing,
and configuring ML pipelines, along with adapting to runtime dynamics – for live ML queries based
on user-provided performance requirements. The goal is to find query plans that optimize latency
and accuracy, while minimizing the network and compute resource consumption. Generating
such query plans, however, is challenging as jointly optimizing pipeline construction, placement,
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Figure 4.1: The existing workflow of query planning for a live ML query.

and query configuration leads to a much larger search space. Moreover, as query performance is
resource and data dependent, considering all possible resource and data dynamics that may or may
not happen in the future can explode the search space. Clearly, a more efficient online adaptation
technique is needed for faster convergence and lower cost.

We present Vulcan, an ML analytics system that performs automatic query planning for live ML
queries. Its design includes the following key ideas to overcome the aforementioned challenges:

(1) Vulcan defines a novel metric to quantify each filtering operator in the pipeline by combining
query precision, recall, resource usage, and latency (§4.4.2). This converts the complexity of filter
ordering from exponential to linear.

(2) Vulcan carefully identifies components of ML pipelines that are independent of placement.
This allows Vulcan to dramatically prune the search space of placement options.

(3) Vulcan efficiently explores the best combination of configuration knobs using Bayesian
Optimization (BO) [158, 43]. It designs BO’s priori assumptions and acquisition function to jointly
optimize placement and configuration selection.

(4) Vulcan adapts quickly to dynamic changes in data and resources by (i) designing program-
ming interfaces that allow for dynamic updates to live pipelines modules without disrupting them,
and (ii) leveraging prior knowledge to make faster decisions on modifying configurations and
placement.

We evaluate Vulcan using real-world datasets on a wide range of applications including traffic
monitoring, autonomous driving perception, and automatic speech recognition. Experiments are
conducted under an edge hierarchy that represents real compute and network resource setting of our
production infrastructure. Vulcan generates query plans with better profiling cost by 4.1×-30.1×
over state-of-the-art ML analytics systems while delivering 3.3× better query latency performance.
Vulcan outperforms existing solutions for ML query configuration and placement selection with up
to 2.8× better query latency and 174× lower network resource consumption. Vulcan also achieves
consistently better 99𝑡ℎ-𝑝 latency by up to 2.5× by adapting to both data and resource changes
during online adaptation (§4.6).
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In summary, we make the following research contributions:
• We provide an end-to-end system design for live ML queries for a wide range of real-world ML

applications.
• We propose novel solutions on search space reduction for constructing, placing, and configuring

ML pipelines.
• We implement interfaces and control loop for online adaption for fast re-profiling and dynamic

re-configuration.

4.2 Background and Motivation

We start with an overview of the workflow of live ML query processing, followed by motivating
examples to highlight the key aspects when choosing query plans.

4.2.1 Processing Live ML Queries

We explain the query planning workflow by walking through an example query which detects
surrounding objects in edge-assisted autonomous driving, as shown in Figure 4.1. The input
query specifies input data, object of interests, pipeline operators, and performance requirements on
accuracy and latency.

1 Constructing the pipeline. The first step is constructing the ML pipeline by choosing a series
of operators to perform the task. Specifically, it involves choosing filtering operators, such as
voxelization and ground removal, to be deployed for substantial resource efficiency prior to the ML
models, such as the 3D object detector [130, 223] in the case of Figure 4.1. The ordering of the
filtering operators has a significant impact on performance. The best ordering is dependent on the
data, resource availabilities, and performance requirements.

2 Configuring the pipeline. After the operators are chosen in the pipeline, the next step is
selecting configuration knobs to achieve the best tradeoff between query performance and resource
consumption [226, 107, 98, 39, 145]. In our example, configuration knobs include ground distance,
the voxel size, and the choice of a 3D object detection model.

3 Selecting physical placement. The next step is placing pipeline operators across the hetero-
geneous edge infrastructure, starting from the device edge and to the cloud (Figure 4.1). This
heterogeneity introduces complexity in placement of the operators and influences the end-to-end
latency performance of the ML pipeline.

4 Performing online adaptation. After a query is deployed, its performance is affected by
runtime dynamics due to resource changes and data variations. Resource changes are common
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Figure 4.2: (a) Performance requirement on accuracy (𝑨𝒓𝒆𝒒) and latency (𝑳 𝒓𝒆𝒒) of the ex-
ample query. (b) Query’s pipeline (𝐼𝑛𝑝𝑢𝑡 → 𝐺𝑟𝑜𝑢𝑛𝑑𝑅𝑒𝑚𝑜𝑣𝑎𝑙 → 𝑉𝑜𝑥𝑒𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 →
𝑂𝑏 𝑗𝑒𝑐𝑡𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 → 𝑂𝑢𝑡𝑝𝑢𝑡). (c) Offline profiling results. The last column records the size
of the data at different stages of the pipeline: data at the source | after ’G’ | after ’V’. Data after ’D’
is not shown due to negligible size.

because of other workloads on the edge infrastructure (e.g., 5G RAN containers) or network
outages [168, 136]. The content of the data, such as lighting or object densities [39, 107], can
also change during the lifetime of a query. An ideal solution should adapt to runtime dynamics by
adjusting the pipeline’s filters, its configurations, and placement.

4.2.2 Motivating Examples

We now highlight some of the key challenges toward performing query planning for live ML queries
using toy examples.

Jointly optimizing configuration and placement. Current practice considers pipeline placement
and query configuration separately [107, 39, 115, 221, 153]. Designers first perform offline
profiling to determine the optimal query configuration, and then select placement based on heuristics
(prioritize network or compute, etc.) or greedy algorithms [221]. Such an approach fails to consider
additional query latency introduced by pipeline placement, leading to sub-optimal query plans.

To illustrate this, take an example autonomous driving query, whose performance requirements
and pipeline are shown in Figure 4.2a and 4.2b. Figure 4.2c records the offline profiling results
assuming only 2 sets of configuration knobs (𝐶1 and 𝐶2) exist. In this case, the baseline approach
identifies 𝐶1 as the optimal configuration since it performs better both in terms of accuracy and
latency than 𝐶2. It then pairs 𝐶1 with one of the placement choices in our simplified two-tier
infrastructure shown in Figure 4.3a.

However, as shown in Figure 4.3b, none of placement choices would satisfy the query’s end-
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Figure 4.3: Placement choices and corresponding end-to-end performance. (a) All four feasible
placement choices in a two-tier setting (Device Edge→Datacenter). (b) The baseline approach
which first acquires the optimal combinations of configuration knobs

during offline profiling (𝐶1) and then selects placement fails to meet the latency target. An ideal
solution should select 𝐶2 & 𝑃2 by jointly optimizing configuration and placement. Note accuracy

does not depend on placement and remains unchanged.

to-end latency requirement if 𝐶1 is selected. The end-to-end latency is composed of the compute
latency (time spent in the object detector) and additional network latency occurred over the edge.
For example, the additional network latency in 𝑃1 is computed as the time it takes to transmit
the output data of the ground removal module using the link bandwidth, which is set to 20MBps
in this example.1 An ideal solution should select 𝐶2 by jointly considering both placement and
configuration.

Constructing pipelines based on performance requirements. Different orderings of filtering
operators lead to different performance characteristics of ML pipelines. Therefore, an ideal solution
must construct the pipeline based on query-specific performance requirements. For instance, if we
change the performance requirements of the original example query to a lower latency target with
more tolerance on accuracy (shown in Figure 4.4a), then none of the query plans in Figure 4.3b
can satisfy the new latency target as long as they use the pipeline from Figure 4.2b. Instead, we
need to use a new pipeline which swaps the order of the two filters (Figure 4.4b). As filters are not

1In this example, the compute latency is assumed to be doubled when placing the detector on the device edge (i.e.,
in 𝑃3).
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Figure 4.4: Given an updated performance requirement, a new pipeline is required to meet the
latency target. The new pipeline swaps the order of the two filters (’V’ & ’G’), delivering a
different performance characteristic than the old one in Figure 4.2b.

independent to each other, placing ‘V’ before ‘G’ reduces more data, leading to better latency but
lower accuracy (Figure 4.4c). Figure 4.4d shows the end-to-end results with the optimal query plan
using the new pipeline. We omit for brevity the same process of finding the optimal placement and
configuration as we did earlier.

Building an ideal solution that handles all the aforementioned aspects of live ML query planning
is non-trivial, as selecting the right pipeline, placement, and configuration jointly leads to a huge
search space both during offline profiling and online adaptation. We next describe how Vulcan
overcomes these challenges in a high-level system overview.

4.3 System Overview

Vulcan is an ML analytics system that provides automatic query planning for live ML queries. It
takes charge of the entire lifecycle of a ML query by constructing, configuring, and placing its ML
pipeline, and performing online adaptation after the query is deployed.

Figure 4.5 presents a high-level system diagram of Vulcan. A user launches a live ML analytics
task by submitting an input query to Vulcan, along with performance requirements. An example of
Vulcan input queries can be found in Figure 4.1. Upon parsing the query, Vulcan Profiler generates
its query plan by determining the query pipeline, placement of pipeline operators, and pipeline
configuration. In Vulcan, query plans are evaluated using a utility function we define that combines
the query performance and resource consumption (§4.4.1). To determine which pipeline to use for
a query, Vulcan first constructs an initial pipeline by mapping user query specification to a general
template optimized for performance and resource efficiency, and then determines the best ordering
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Figure 4.5: High-level workflow of Vulcan.

of filtering operators based on a new metric we define to capture the impact of filters on query
latency and accuracy (§4.4.2).

Given a constructed pipeline, Vulcan jointly searches for the best placement and query con-
figuration which, when combined, gives the highest utility. To explore placement choices with
low cost, Vulcan reuses intermediate results from pipeline runs, such that a pipeline with the
same configuration only needs to be offline profiled once. In the meantime, it also early prunes
unpromising placement choices to further reduce the profiling cost (§4.4.3). For each placement,
Vulcan searches for the best query configuration by leveraging Bayesian Optimization to explore a
large number of query configurations with a small number of trials (§4.4.4).

After query deployment, Vulcan continues to monitor query performance to detect runtime
dynamics. During such events, Vulcan reprofiles the pipeline in a quick and low-cost fashion by
leveraging prior knowledge (§4.5).
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4.4 Vulcan: Profiler Design

This section introduces the utility function we define to compare query plans, followed by how
Vulcan construct, place, and configure the ML pipelines for live ML queries.

4.4.1 Defining Utility of Query Plans

We start by defining a utility function to evaluate the value of a query plan as we explore the
search space. Existing literature has proposed various utility functions [27, 108, 154, 193] to
combine query accuracy and latency. We build on top of these works and extend the utility function
introduced in VideoStorm [226] to make it resource-aware. Resource consumption for live ML
queries is as important as query performance, because each ML pipeline is deployed over edge
infrastructure, where limited network and compute resources must be shared between applications.
A query plan with good performance but excessive resources is undesirable.

Given a pipeline 𝑞 with placement 𝑝 and pipeline configurations 𝑐, we define 𝑈𝑞,𝑝,𝑐, the utility
function of a query plan, as the ratio of the query performance to resource consumption:

𝑈𝑞,𝑝,𝑐 = 𝑃𝑞,𝑝,𝑐/𝑅𝑞,𝑝,𝑐 (4.1)

such that the higher the utility value is, the better performance and cost for the query plan. 𝑃𝑞,𝑝,𝑐
combines query accuracy (𝐴) and end-to-end latency (𝐿) by calculating the reward (penalty) for
achieving good (bad) performance based on a minimum accuracy target (𝐴𝑚) and a maximum
latency target (𝐿𝑚):

𝑃𝑞,𝑝,𝑐 (𝐴, 𝐿) = 𝛾 · 𝛼𝐴 · (𝐴 − 𝐴𝑚) + (1 − 𝛾) · 𝛼𝐿 · (𝐿𝑚 − 𝐿) (4.2)

, where 𝛾 ∈ (0, 1). 𝛾 allows users to express their preference between accuracy and latency. 𝑅𝑞,𝑝,𝑐
combines the compute and network resource consumption of the pipeline:

𝑅𝑞,𝑝,𝑐 = 𝛼𝑔𝑝𝑢 · 𝑅𝑔𝑝𝑢 + 𝛼𝑛𝑒𝑡 · 𝑅𝑛𝑒𝑡 (4.3)

The consumption of the compute (𝑅𝑔𝑝𝑢) is calculated as the fraction of the GPU processing time
used by the query. In Vulcan, we assume compute cost is dominated by GPU cost, as the queries
we tackle rely heavily on GPU-based DNN models. The network resource consumption (𝑅𝑛𝑒𝑡)
is calculated as the sum of the fraction of the network bandwidth used by the pipeline on each
network path between the edges. The constants 𝛼𝐴, 𝛼𝐿 , 𝛼𝑔𝑝𝑢, and 𝛼𝑛𝑒𝑡 are set by the operator to
balance query performance and resource usage. Note that Vulcan’s solution is orthogonal to the
utility function and works for any utility function defined by the operator.
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4.4.2 Determining the Query Pipeline

The first step in profiling is to construct the query pipelines. Vulcan performs pipeline construction
by first generating an initial pipeline, and then determines the best ordering of pipeline operators
to carry to the later profiling stages.

4.4.2.1 Constructing the Initial Pipeline

Given a user query, Vulcan generates an initial pipeline using a general template with several
types of building blocks, as shown in Figure 4.6. Starting from the data source, Vulcan constructs
the initial pipeline by inserting (A) filtering modules which reduce the data size or data rate via
sampling or filtering techniques, (B) the ML model to perform the actual inference task such as
object detection, and (C) specialized modules for additional tasks required by the query, such as
an object tracker (e.g., re-identification modules [110, 134, 137]), which can be performed only
after the major ML inference task. Vulcan uses a pool of filter and ML modules that are readily
available, provided by users, infrastructure providers, or third-party developers and organizations
(e.g., public ML model zoos) to handle user queries. Filters and the ML model to use for the query
is specified by the user in the input query (Figure 4.1). Based on the chosen operators, Vulcan
generates a list of configuration knobs among which the profiler searches for an optimal set of
configurations (§4.4.4).

The key insight behind arranging the building blocks in this way is to reduce the amount of
data transfer across the edge earlier in the pipeline and leave operators with higher computation
cost in later pipeline stages. This maximizes the savings in both network and compute resource
as less data is transmitted and processed across the edge tiers. The design can improve end-to-end
query latency by reducing the network latency as well as the GPU processing delay with potentially
smaller data size for ML inference.

This initial pipeline leaves us with a follow-up given the impact of filter ordering on query
performance (§4.2.2): In what order should we place the filters?
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4.4.2.2 Selecting the Ordering of Filters

A naïve solution for selecting the filter ordering is to explore pipeline placement and configuration
for all possible orderings; this, however, does not scale as the number of filters increases. In
Vulcan, we propose a new solution that compares the impact of different filter orderings on query’s
accuracy, latency, and resource consumption by evaluating recall and precision of filters. We first
explain how it works for a single filter before moving on to the multi-filter scenario. We define recall
of a filter as the fraction of samples in the original data that contains the objects of interest (i.e.,
relevant data) that passes through the filter. On the other hand, precision of a filter is the fraction of
data samples in its output that contains relevant data. For a given filter, we would expect its recall
to be high such that it still captures most of the desired data, and query accuracy is preserved. A
filter with low recall drops true positive samples which cannot be recovered later in the pipeline.
Among filters with the same recall, we prefer the ones with higher precision because these filters
provide higher data reduction rate by picking up fewer irrelevant samples, leading to better latency
and resource savings.

We can now define the metric to evaluate how a given filter affects a query plan’s utility (𝑈𝑞,𝑝,𝑐).
The metric should also handle a query’s preference between latency and accuracy, based on the
parameter 𝛾 defined in Eq (4.2) in our utility function. To this end, we leverage a variation of the
F-measure in information retrieval theory [187] to encode this preference. Denote 𝐹𝛾 as the score
for a given filter with its precision and recall measurements:

𝐹𝛾 = (1 + 𝛽2) · precision · recall
(𝛽2 · precision) + recall (4.4)

where 𝛽 = 𝛾/(1− 𝛾). In the F-measure definition, the value of 𝛽 captures how many times recall is
considered more important than precision. As we explained earlier, recall and precision corresponds
to query accuracy and latency respectively, and thus the value of 𝛾/(1 − 𝛾) (see Eq (4.2)) is used
to capture our accuracy-latency preference.

Measuring 𝐹𝛾 tells us how well a single filter fits into a query’s optimal query plan. However,
two challenges remain. First, directly applying 𝐹𝛾 to sort a sequence of filters does not work well
as the recall of a filter can change based on its preceding filter. Second, filters may have their
own configuration knob that leads to different precision or recall measurements. Applying one
set of configuration for all filters oversimplifies the problem with inaccurate estimation, whereas
evaluating too many configuration sets increases profiling cost.

We address multiple filters by treating a sequence of filters as a bulk filter with input being
the data source and the output being the one from the last filter, and measure the overall 𝐹𝛾
using representative data for each permutation of the available filters. To deal with filters with
various configurations, we choose a few representative configuration settings to capture the effect
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of configuration knobs on filters, where in each setting all the filters are configured at the 𝑥-th
percentile in the range of their configuration knob. Filters with no configuration parameter remain
unchanged. We empirically find 𝑥 = 20-th, 50-th and 80-th good enough at picking promising
pipelines, which results in {3 × total number of filter ordering} 𝐹𝛾 values to collect. Vulcan then
picks the ordering which achieves the highest 𝐹𝛾 to complete the pipeline construction.

4.4.3 Determining Placement Choices

After constructing the pipeline, the next step is placing each of the pipeline operators across the
edge infrastructure (see Figure 4.5). On the one hand, rule-based solutions are good at reducing
search cost but may fail to explore all promising placement choices. On the other hand, exhaustively
searching through all placement choices requires high search cost during profiling as we deploy
the query across the edge. Vulcan combines the benefits of the two approaches by (i) reducing
search cost by reusing intermediate results from pipeline runs, and (ii) early pruning unpromising
placement choices.

4.4.3.1 Reusing Pipeline Results

The idea of reusing pipeline results is based on two key observations we make in live ML pipelines.
First, query accuracy does not depend on the placement choices of a pipeline with the same query
configuration. Second, the amount of data generated after each pipeline operator is independent
of placement choices. These observations allow us to deploy the pipeline offline in the datacenter
only once per selected query configuration during the profiling stage to collect pipeline operator
results, and reuse those results to evaluate a new placement choice by calculating additional
latency and resource consumption components introduced by the placement, while reusing the
same query accuracy result. Given a total of 𝑀 placement choices and 𝑁 combinations of pipeline
configurations, our solution improves the search complexity from 𝑂 (𝑀𝑁) to 𝑂 (𝑁) for a given
pipeline.

Algorithm 3 describes how Vulcan evaluates placement choices. Given a pipeline, we begin
with generating a collection of all feasible placement choices. Obviously infeasible choices where
operators are placed in a different order than they appear in the pipeline (e.g., placing the DNN model
in front of the filters) are excluded from the collection. For each placement choice, Vulcan explores
promising query configurations to evaluate the utility of the query plan (details of how Vulcan
picks query configurations are in Section 4.4.4). For every new set of pipeline configurations,
Vulcan launches the pipeline inside the datacenter. In this case, Vulcan not only collects query
performance and resource consumption for utility calculation but also caches intermediate results
from each pipeline operator, including the operator’s output size, output bandwidth, and data

75



Algorithm 3: Vulcan Placement Selection
1 Notation:

𝑞: constructed pipeline (from §4.4.2.1),
P: all feasible placement choices given q,
𝐴𝑚: accuracy target, 𝐿𝑚: latency target,𝑈: utility,
𝑟𝑒𝑠: pipeline results used to calculate utility

2 Function 𝑆𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(𝑞, 𝐴𝑚, 𝐿𝑚):
3 P ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑙𝑙𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐶ℎ𝑜𝑖𝑐𝑒𝑠(𝑞)
4 foreach placement 𝑝 ∈ P do
5 𝑐 ← 𝑁𝑒𝑥𝑡𝐶𝑜𝑛 𝑓 𝑖𝑔() ⊲ from §4.4.4
6 𝑐𝑜𝑢𝑛𝑡 = 0 ⊲ reset early pruning counter
7 if 𝑐.ℎ𝑎𝑠𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑 () then
8 𝑟𝑒𝑠 = 𝐿𝑜𝑎𝑑𝐹𝑟𝑜𝑚𝐶𝑎𝑐ℎ𝑒(𝑞, 𝑐)
9 else

10 𝑟𝑒𝑠← 𝐿𝑎𝑢𝑛𝑐ℎ𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒(𝑞, 𝑐)
11 𝐶𝑎𝑐ℎ𝑒𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑅𝑒𝑠𝑢𝑙𝑡𝑠(𝑟𝑒𝑠)
12 𝑈𝑝,𝑐 = 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝑞, 𝑝, 𝑟𝑒𝑠)
13 if 𝑈𝑝,𝑐 ≤ 𝑈𝑝,𝑐 (𝐴𝑚, 𝐿𝑚) then
14 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1
15 if 𝑐𝑜𝑢𝑛𝑡 ≥ 𝐸𝑎𝑟𝑙𝑦𝑃𝑟𝑢𝑛𝑒𝐶𝑜𝑢𝑛𝑡 then
16 continue

17 return argmax𝑝∈P,𝑐𝑈 (𝑝, 𝑐)

processing time (i.e., time spent in a filtering module or GPU inference time)2 (Algorithm 3 lines
10-11). If a chosen pipeline configuration 𝑐 has been explored by a previous placement choice,
Vulcan calculates the utility for the new placement 𝑝 by estimating the new query end-to-end
latency 𝐿𝑝,𝑐 and resource consumption 𝑅𝑝,𝑐 without launching the pipeline (lines 7-8,12). 𝐿𝑝,𝑐 is
estimated by summing up the total processing time of each operator measured offline excluding
the DNN module, the additional network latency introduced by placement, and the updated GPU
inference latency as shown below:

𝐿𝑝,𝑐 = 𝐿offline,total − 𝐿offline,gpu +
∑︁

𝐿𝑝,𝑛𝑒𝑡 + 𝐿𝑝,𝑔𝑝𝑢 (4.5)

The network component of the new latency,
∑
𝐿𝑝,𝑛𝑒𝑡 , is calculated by summing up the network

latency going across two adjacent tiers. Figure 4.7 illustrates how this process works. The latency
is calculated by taking the ratio of a component’s output size (cached per configuration) to the
assigned link bandwidth capacity the query data traverse through. Note that only the components
sending data to the next tier in the infrastructure are considered. The GPU inference latency, 𝐿𝑔𝑝𝑢,

2Vulcan also collects the size and bandwidth of the data source to account for the case where only the data source
is placed on the first tier.
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AData B C D

Figure 4.7: An example of how additional network latency is calculated for a pipeline with 4
operators placed across the edge infrastructure (i.e., device edge → on-premise edge → public
MEC → cloud). Output sizes of shaded operators are used to calculate the additional latency
introduced by the placement.

is updated by multiplying with a coefficient based on the GPU type to reflect the performance
difference, which we determined by profiling all GPUs available in our cluster. 𝑅𝑝,𝑐 is estimated
in a similar way by including additional network bandwidth and GPU processing time introduced
by the placement. After all placement choices are explored, Vulcan selects the placement (together
with the optimal configuration) that achieves the highest utility (line 17).

4.4.3.2 Pruning Unpromising Placement Choices

Although caching intermediate results allows Vulcan to never re-launch a pipeline with the same
configuration, exhaustively exploring all feasible placement choices may still incur large search
cost as the profiler strives to find a good configuration for an unpromising placement. For example,
a query preferring latency performance will not favor the placement that places the filtering module
too far away from the data source.

To apply early pruning, we set a utility threshold which is equal to the utility value when both
minimum performance metrics is used for the given query configuration and placement, namely
𝑈 (𝑄𝑚, 𝐿𝑚), which is evaluated to zero in our utility definition (§4.4.1). When the profiler obtains
𝑁 utility values below the threshold, we early prune the current placement choice (Algorithm 3
lines 13-16). Compared to other alternative pruning solutions, such as building a statistical model
for pruning decisions, this simple scheme works well because Vulcan profiler is designed to always
pick more promising configuration than its last attempt (§4.4.4), and consecutive bad utility values
indicate a high probability of unpromising placement. This also allows us to set 𝑁 to a small value
(𝑁 = 3 in our implementation) as otherwise the profiler would have already terminated itself after
a small number of attempts.

Placing split ML models. Recent research [74] has proposed the idea of splitting the layers of a
large DNN model and placing them at different edge tiers. Vulcan can handle such design as long
as the split layers are properly specified in the input queries as individual modules.
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4.4.4 Determining Query Configuration

For each placement choice, Vulcan leverage Bayesian Optimization (BO) [158, 43] to efficiently
explore pipeline configurations that achieve the best performance with minimized resource con-
sumption (see Figure 4.5).

4.4.4.1 Why Do We Choose BO?

BO is a methodology for optimizing expensive objective functions and is widely applied to many
computer systems [202, 141, 149, 23, 42, 122]. At a high level, it learns the shape of the objective
function by picking inputs that has the highest probability of reaching the global maximum of the
function. As BO accumulates more observations, it becomes more confident on the actual shape
of the objective function. This is a good fit for our solution as we need to quickly find the optimal
configuration that maximizes the utility function without exploring too many choices.

More importantly, we observe BO has many advantages over other popular optimization schemes
in the context of live ML queries. Greedy Hill Climbing has been applied in query configuration
for video analytics queries [226], but it is purely exploitative and cannot perform as efficient global
exploration as BO does (§4.6.3 provides detailed evaluation). Multi-Armed Bandit (MAB) [95]
is another popular optimization scheme for sequential decision making, but it is designed for
optimizing cumulative rewards, contrasting our goal of finding the one configuration with the
highest utility. In addition, BO tunes the entire set of input configurations all together for each
iteration no matter how large the input vector is, whereas MAB can only adjust one knob at a time.
We also prefer BO over population-based optimization scheme such as Particle Swarm Optimization
(PSO), as applying PSO in query configuration requires launching many ML pipelines in parallel,
leading to a much high computation cost (e.g., GPU resourse).

4.4.4.2 Applying BO to Query Configuration

We define the objective function of BO as 𝑓 (®𝑥), which models how good a given query plan is based
on a given pipeline and a physical placement choice. The input ®𝑥 is the set of query configuration
knobs, and the output of 𝑓 is the utility value, 𝑈𝑞,𝑝,𝑐 for a given pipeline 𝑞 with placement 𝑝 and
a set of configurations 𝑐. For each iteration, Vulcan launches the pipeline with the configurations
suggested by BO (i.e., ®𝑥), and collects the measurements to compute𝑈𝑞,𝑝,𝑐, which is then fed back
to BO as the new observation.

Choice of prior and acquisition functions. Internally, BO learns an objective function by
leveraging a prior function and an acquisition function. The former represents the belief about the
space of possible objective functions, whereas the latter guides BO to choose the next promising
input where the value of acquisition function is maximized. We choose Gaussian Process as the
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prior function and use Matern 5/2 as its covariance function to describe the smoothness of the prior
distribution, which is known to perform well among systems applying BO [202, 23]. Among three
major choices of the acquisition function, namely probability of improvement [129] (PI), expected
improvement [109] (EI), and upper confidence bound [204] (UCB), we select UCB as it works the
best for our workloads. We defer a dynamic approach of selecting acquisition functions [44] to
future work.

Starting and stopping BO. We start with 𝑁 random sets of input query configurations as initial
observations for BO to learn the rough shape of the objective function. We set 𝑁 = 3 in all of
our experiments and found it works well for various workload settings. Vulcan stops BO when the
improvement of the utility value is less than a threshold for a few consecutive runs (i.e., 10% for
5 consecutive runs, which empirically works well). We include a sensitivity analysis on how the
parameters we use in the starting and stopping conditions affect BO’s performance in Section 4.6.7.

One alternative design which seems promising but we do not consider is to directly apply BO for
placement selection and pipeline construction by treating available placement choices and pipelines
as another two knobs in the total configuration space. In BO, input parameters are specified in
a continuous range. For example, the voxel size in the voxelization module of an AD perception
pipelines is chosen between 0.1 and 0.5. As BO moves within this range, the behavior of the module
changes with the size of the voxel, leading to a smoother shape of the objective function with more
predictable outputs. In contrast, the behavior of different placement choices or filter orderings is
hard to predict, and going through the configuration space of those (i.e., placement or pipeline
choices indexed by numbers) leads to very rough shape of the objective function for BO to grasp;
thus it becomes much more difficult to find the global optimum.

4.5 Online Adaptation

This section describes how Vulcan performs online adaptation to handle runtime dynamics after
query deployment. Vulcan currently does not support concurrent execution of different ML queries,
and we defer the support of multi-resource sharing among concurrent live ML pipelines to future
work.

4.5.1 Detecting and Handling Runtime Dynamics

Vulcan leverages two design ideas to quickly converge back to the best query plan during online
adaption: (i) monitor utility change to detect runtime dynamics, and (ii) leverage prior knowledge
during reprofiling.

Detecting runtime dynamics. Vulcan detects runtime dynamics by monitoring the change in a
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Figure 4.8: Scenes taken during different time of day from a video query detecting red vehicles.

query’s utility values, as any runtime dynamics (content, network, or compute based) leads to a
change in utility. This includes all the measurements required to calculate up-to-date utility (i.e.,
latency, accuracy, module output size and bandwidth), and they are periodically reported to Vulcan
monitor via HTTP requests. To obtain real-time ground truth on query accuracy given unlabeled
live data, Vulcan launches a duplicated pipeline with the most expensive configuration inside the
cloud, which only receives live data periodically to minimize network cost. A substantial change
in the utility triggers reprofiling which deploys the query in the cloud similar to the case of offline
profiling. We set the threshold of utility change empirically (10% in our implementation) via
profiling.

Leveraging prior knowledge in reprofiling. We observe that most of the query, such as the object
of interest and where the query takes place, remains the same after deployment; meaning, we can
take the advantage of prior knowledge from offline profiling. Figure 4.8 shows two example scenes
taken by the same camera during different time of the day from a query that detects red vehicles.
We observe a high level of similarity between the two scenes except for environment illumination.
Let us define the distance between two configurations, 𝐶𝐴 and 𝐶𝐵, to be the total number of steps
needed for each configuration knob in 𝐶𝐴 to change to each knob value in 𝐶𝐵. In this example,
applying the same configuration from daytime to nighttime scenes leads to an average 26.2% utility
drop among all placement choices, but it requires only an average distance of 2.47 steps to converge
back to the query plan with the highest utility (figures omitted in the interest of space).

To apply prior knowledge, Vulcan makes the following changes to the normal profiling process.
Vulcan keeps track of the most recent top-K and worst-K configuration per placement choices
(𝐾 = 3), and applies them as initial data points in BO such that BO can quickly grasp the shape
of the objective function. We also tune up the exploitation factor in the acquisition function (𝜅
in UCB [204]) to 1/10 of its original value to focus more on exploitation than exploration. Note
that Vulcan does not just stick to the best placement choice but choose to re-perform placement
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1 HttpProcessor _httpProcessor = new HttpProcessor(Config.ENDPOINT_URL_SAMPLING);
2 Int sampling_rate = 3; // selecting 1 out of 3 frames
3 var form = new MultipartFormDataContent();
4 form.Add(new StringContent(sampling_rate.ToString()), "frameSamplingRate");
5 var result = await _httpProcessor.PostAsync(form);

(a) Sending Configuration Updates

1 // POST: api/Config
2 [Produces("application/json")]
3 [HttpPost]
4 public async Task<IActionResult > PostConfig([FromQuery] string frameSamplingRate = null)
5 {
6 if (frameSamplingRate != null)
7 {
8 Config.FRAME_SAMPLING_RATE = Int32.Parse(frameSamplingRate);
9 /* sampling rate updated for subsequent frames */

10 }
11 return Ok();
12 }

(b) Posting Configuration Updates

Figure 4.9: Code snippets of Vulcan APIs on dynamically updating query configuration. (a) Vulcan
Profiler sending the configuration updates to deal with runtime dynamics. (b) Vulcan Controller at
the container updates the configuration to use the updated value.

selection. As runtime dynamics can involve network and compute resource changes, this allows
Vulcan to change the placement of the pipeline when merely adjusting query configuration makes
little impact on recovering query performance. We evaluate how Vulcan performs under different
types of runtime dynamics in Section 4.6.6.

4.5.2 Enabling Online Adaptation

After identifying the right query plan upon runtime dynamics, we must also enforce this at produc-
tion scale. Unfortunately, existing frameworks for large-scale deployment, such as Kubernetes [13],
do not support container modification during execution. Therefore, Vulcan adds its own imple-
mentation.

Dynamically updating query configuration. Figure 4.9 shows the example interfaces of Vulcan
sending configuration updates and posting them inside the container upon a change in the frame
sampling rate of a traffic monitoring query. In Vulcan, each pipeline module is installed and
launched by a container. Query configurations are updated in real time without stopping the
containers. If any configuration knobs need to be updated after reprofiling, Vulcan sends out
updated configuration using HTTP requests to the containers that launch the corresponding modules
(Figure 4.9a). The exact location (ENDPOINT_URL_SAMPLING) of the containers is acquired
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when Vulcan first deploys the pipeline. The containers receiving the request update the configuration
right away, without stopping the current ML task (Figure 4.9b).

Handling placement changes. If the new query plan involves a placement change (e.g., during
network or compute resource change), Vulcan migrates the container of the corresponding module
to the updated tier. To perform the migration, Vulcan first launches the module with the same query
configuration on the target tier. It then updates the location of the new container to the upstream
module via the same API for configuration updates described in §4.5.1, before removing the old
container on the current tier. The new location of the container is also updated in Vulcan monitor
for future adaptation.

4.6 Evaluation

We evaluate the effectiveness of Vulcan in performing automatic query planing in terms of profiling
time, query performance, and query resource consumption. Our key findings:

(1) Vulcan generates query plan with better profiling cost by 4.1×-30.1× over state-of-the-art ML
analytics systems while delivering up to 2.0×-3.3× better latency (§4.6.2).

(2) Vulcan performs better query configuraiton, placement selection, and pipeline construction by
outperforming existing solutions with up to 2.8× better query latency and 174× lower network
resource consumption (§4.6.3-§4.6.5).

(3) Vulcan achieves consistently better 99𝑡ℎ-𝑝 latency performance (by up to 2.5×) during online
adaptation over the-state-of-the-art (§4.6.6).

4.6.1 Experiment Setup

Live ML Queries. We illustrate Vulcan’s performance in performing query planning for three
example live ML queries:
• Video Monitoring: monitors the traffic volume by examining live video frames and counting the

vehicles of a specific color (white color in our examples).
• Autonomous Driving Perception: takes 3D point cloud as input and generates a real-time

perception (represented as 3D bounding boxes) surrounding a vehicle.
• Automatic Speech Recognition: converts live human speech (with background noises) into

written text.

Datasets. We adopt several real-world datasets for each query example to perform a compre-
hensive evaluation. The video monitoring queries use videos captured by traffic cameras among
different metropolitan areas in Bellevue and Washington D.C. The autonomous driving queries use
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Table 4.1: ML model variations used in evaluation.

Model # Parameters (Million)

YOLO [185] v5n6 v5s6 v5m6 v5l6 v5x6
3.2 12.6 35.7 76.8 140.7

PointPillars [130] SECFPN SECFPN (FP16)
4.9 4.9

SSN [236] SECOND RegNet
6.2 7.1

CenterPoint [223] DCN Circular NMS
6.0 6.1

wav2vec2 [32] base large_10m large_960h
94.4 315.5 315.5

HuBERT [224] large xlarge
315.5 962.5

LiDAR sensor data from nuScenes [45]. Automatic speech recognition queries use the VOiCES
dataset [186] with background noise enabled. Appendix C.1.1 has more details.

Pipelines. Unless otherwise specified, video monitoring queries in our evaluation experiments use
the same pipeline which consists of the following components in order: a background subtractor
to detect moving vehicles, a color filter, and a variations of YOLOv5 [11] object detector. The
autonomous driving pipeline feeds 3D point clouds into a ground removal module, followed by a
voxelization module and a variations of PointPillars [130], SSN [236], or CenterPoints [223] 3D
object detector. The speech recognition queries use a pipeline that consists of an audio sampler,
a noise reduction module, a variation of wav2vec2 [32] or HuBERT [224] model, and a decoder.
Table 4.1 records all ML model variations we use in the evaluation. Appendix C.1.1 describes the
details of the query configuration knobs for all queries.

Baselines. We consider the following baselines for Vulcan.
• Exhaustive search. To determine the optimal placement and configuration for a ML pipeline, we
use exhaustive search to explore all possible placement choices and configurations.
• ML analytics systems. We implement four state-of-the-art ML analytics systems:
VideoStorm [226], Chameleon [107], JellyBean [221], and LLAMA [189]. Both VideoStorm
and Chameleon adopt a variant of greedy-hill climbing during query profiling, and Chameleon ap-
plies spatial and temporal correlations to reduce the search cost during online adaptation. JellyBean
selects models with target accuracy and lowest cost, and applies beam search to determine query
placement in a greedy fashion. LLAMA dynamically explores query configuration by computing
per-invocation pipeline latency.
•Pipeline placement strategies. Besides JellyBean’s greedy placement, we implement the following
commonly-adopted placement strategies: (1) prioritizing network (PN) which places operators
closer to the device edge, (2) prioritizing compute (PC) which places operators closer to the cloud,
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Figure 4.10: Comparing the profiling cost of video monitoring, autonomous driving, and speech
recognition queries.

and (3) balancing network and compute (NC) which places filtering modules closer to the device
edge and the remaining operators to the cloud.

Emulation Setup. We emulate a setup of 4 edge tiers consisting of the device edge, the on-prem
edge, the public MEC, and the cloud, which is consistent with our production edge infrastructure
by adding additional network latency and compute overhead. The network bandwidth and compute
cost are emulated based on the real network and hardware settings in our production infrastructure.

We run all experiments 20 times with different random seeds, and collect 10th, 50th, and 90th
percentiles of data to include the effect of randomness in Vulcan and other baselines. The 10th
and 90th percentiles are plotted via error bars unless otherwise specified. We set 𝐿𝑚 for video
monitoring, autonomous driving, and speech recognition queries as 2000ms, 400ms, and 500ms,
respectively. 𝑄𝑚 is set at 0.8 × the accuracy achieved by the most expensive configuration for each
type of queries. We set 𝛾 (preference of query accuracy over latency) to be 0.5 for all queries unless
otherwise specified.

4.6.2 End-to-End Improvement

We start with showing the end-to-end improvement of Vulcan over other baselines in generating
query plans for all three types of queries. We compare exhaustive search, original VideoStorm
that explores all placement choices, VideoStorm+ that explores a combination of all three baseline
placement strategies (i.e., PN, PC and NC) on top of VideoStorm, and JellyBean. We compare
Vulcan with Chameleon and LLAMA during online adaptation in §4.6.6 as their query configuration
by design happens in the online phase.

We record profiling time normalized by the time spent by Vulcan, which achieves the smallest
value in both types of queries. We also record performance (accuracy, median latency, and
99𝑡ℎ-𝑝 latency) and resource consumption (network and compute) achieved by the query plan
and normalize the results based on the optimal query plan generated by exhaustive search. For
VideoStorm, VideoStorm+, and JellyBean, we record the query plan achieved with highest utility
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Figure 4.11: Comparing end-to-end performance and resource consumption for video monitoring
queries.

given the same profiling time as Vulcan.
Figure 4.10 records the profiling cost for all types of queries, and Figure 4.11 summarizes the

performance and resource consumption for video monitoring queries. Results for autonomous
driving and speech recognition queries are similar and moved to Appendix C.1.2 in the interest
of space. Vulcan achieves significantly lower profiling cost than exhaustive search, VideoStorm,
VideoStorm+, and JellyBean by at least 60×, 22.2×, 4.1×, and 6.9× respectively across all three
types of queries, and its query performance and resource consumption are very close to the optimal
one achieved through exhaustive search, achieving up to 2.0×-3.3× better tail latency than other
baseline approaches. Vulcan’s performance improvement comes from its joint optimization of
pipeline placement and configuration with low cost. Vulcan avoids exhaustively searching for
optimal placement by reusing pipeline results. VideoStorm+ improves profiling time by only
exploring a few placement choices, at the cost of worse latency and network resource consumption,
and it is still outperformed by Vulcan by at least 4.4×. JellyBean’s placement algorithm greedily
finds promising placement choices but separately optimizes query configuration and placement,
leading to sub-optimal latency, accuracy, and resource usage.

4.6.3 Selecting Better Query Configurations

We next delve into the performance of each profiling components in Vulcan, starting with query
configuration. Figure 4.12 shows the profiling cost among Vulcan and other baselines with the same
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Figure 4.12: Profiling cost of query configuration given the same pipeline and placement.
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Figure 4.13: BO’s search path in selecting configurations. The new maximum in utility is marked
in green. The initial random configurations are shown in black.

pipeline and the best placement choice. Even without the benefits achieved in efficient placement
selection, Vulcan can still outperform VideoStorm, which leverages greedy hill climbing, by 3.5×
in profiling time. To illustrate how Vulcan achieves this, we plot one of Vulcan’s example BO
search path in the video monitoring query in Figure 4.13. BO focuses its exploration on larger
resizing factor after verifying that smaller values lead to worse performance, and finds the optimal
query configuration at the 6𝑡ℎ step. BO takes 5 more steps to confirm we are not likely to encounter
better results before stopping, which we do not plot for legibility.

4.6.4 Selecting Better Placement

We evaluate Vulcan’s placement decisions by comparing with common placement strategies (§4.6.1)
and JellyBean. Each baseline placement strategy uses exhaustive search to find the optimal pipeline
configuration, and all comparisons use the same pipeline. We ignore the profiling time improve-
ment of Vulcan over other baselines and only focus on comparing the achieved performance and
resource consumption. Figure 4.14 illustrates the results of video monitoring queries. Results for
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Figure 4.14: Comparing Vulcan with different placement strategies on serving video monitoring
queries.

autonomous driving and speech recognition queries are similar and shown in Appendix C.1.3. We
observe that PN prioritizes network latency but fails to consider the large ML inference latency on
slower compute nodes, resulting in worse end-to-end query latency. PC optimizes ML inference
latency, which does not always lead to better latency. Moreover, it consumes significantly more
network resources. NC tries to strike a balance between PN and PC but still achieves worse latency.
JellyBean’s placement algorithm is based on a fixed query configuration that is determined in a
prior stage, leading to a sub-optimal placement choice. In comparison, Vulcan always achieves the
same placement choices as the exhaustive search and delivers up to 2.8× better query latency and
174× network resource consumption than other baselines, thanks to its joint optimization between
placement and configuration. The performance gap between Vulcan’s query plan and the optimal
query plan is caused by Vulcan picking a different pipeline configuration, in which case Vulcan
takes much less profiling time with similar performance and resource consumption.

4.6.5 Selecting Better Pipelines

We now evaluate how well Vulcan selects the filter ordering during pipeline construction based
on performance requirements of the queries. We compare the performance of fixed pipelines with
Vulcan’s choices, which is dynamically determined based on 𝐹𝛾 in Eq 4.4 (§4.4.2). To focus on
whether Vulcan makes the correct choice of filter ordering, we remove the potential noise of BO
by using the best pipeline configuration determined by exhaustive search. We sweep 𝛾 and record
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Figure 4.15: Compare Vulcan’s selection of filter ordering with fixed pipeline settings in video
monitoring queries.
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Figure 4.16: Comparing Vulcan with Chameleon during online adaptation for video monitoring
queries.

the utility value achieved by picking the corresponding pipeline. Figure 4.15 shows that Vulcan is
able to select the best pipeline in 8 out of 9 cases. On the other hand, sticking to the other two fixed
pipeline settings leads to only 6 out of 9 cases and 3 out of 9 cases for selecting the correct filter
ordering.

4.6.6 Handling Runtime Dynamics

To evaluate Vulcan’s online adaptation, we compare it with Chameleon and LLAMA, the state-
of-the-art solution in adapting runtime dynamics in ML queries. We took a continuously running
6-hour long video from our Washington D.C. video dataset to monitor red vehicles. Performance
(99𝑡ℎ-𝑝 latency and accuracy) was collected and reported at the end of every hour. All three systems
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(b) Stopping Condition

Figure 4.17: Sensitivity analysis of BO’s parameters.

started with the same video monitoring pipeline and placement, where the background subtractor
and the color filter are placed on the device edge, and the object detector is placed on the public
MEC. At the end of the 3rd hour, we reduced the link capacity from the on-premise edge to the
Public MEC by 20× to simulate a network outage. We see in Figure 4.16 that Vulcan achieves
consistently better latency than Chameleon and LLAMA by up to 2.5×. Neither Chameleon nor
LLAMA updates pipeline placement upon resource changes, causing worse latency after the outage.
On the other hand, Vulcan adjusted the pipeline placement by placing the object detector onto the
on-premise edge after the outage, thus mitigating the latency hikes.

4.6.7 Sensitivity Analysis

We analyze the sensitivity of two parameters used in BO during pipeline configuration in Fig-
ure 4.17. We use the same experiment setting in Figure 4.12 with video monitoring queries.
Figure 4.17a plots the profiling time normalized by the value picked in Vulcan implementation
when sweeping the number of initial random configurations passed to BO. The number of random
configurations does affect the profiling time but has a negligible impact on the quality of the query
plan achieved. Figure 4.17b sweeps the stopping threshold of BO, which is the number of consec-
utive rounds without significant improvement. BO needs at least 3 rounds to obtain a good chance
of finding optimal configurations, but adding more rounds won’t further improve the quality of
profiling.

4.7 Related Work

Configuration management for ML analytics. Finding better configurations for ML analytics
is a well studied research topic [226, 107]. VideoStorm [226] investigates query’s accuracy-
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latency profile and applies a greedy hill-climbing approach to search for query configurations.
Chameleon [107] applies spatial and temporal correlations of video frames to reduce the search
cost of query configurations during online adaptation. Although VideoStorm and Chameleon
works well for ML quries with fixed pipeline placement, Vulcan jointly explores placement and
configurations for live ML queries deployed across a heterogeneous infrastructure.

Constructing ML pipelines with declarative queries. Researchers have proposed declarative
query languages, especially for video analytics, to construct ML pipelines [37, 63, 144, 188].
MIRIS [37] provides a declarative interface to select video object tracks and selects corresponding
modules based on user specification. Viva [188]’s declarative interface allows users to specify rela-
tional hints to express the relationship among different modules, which helps Viva to construct and
optimize the pipeline. However, those works only consider accuracy requirement when optimizing
pipelines and ignore the resource demands especially network usage, providing no guarantees to
end-to-end latency performance.

Domain-specific optimization for ML analytics Applying domain-specific knowledge to perform
optimization for ML analytics is an active research area spanning many use cases including video
analytics [63, 107, 37], autonomous driving perception [227, 182, 228], and automatic speech
recognition [139, 64]. BlazeIt [63] leverages spatiotemporal information of objects in video
to optimize aggregation and limit queries. VI-Eye [228] achieves better accuracy and latency
performance by exploiting domian knowledge in autonomous driving scenarios to recognize key
semantic objects that can be used to align vehicle-infrastructure point cloud pairs. Vulcan’s design
is orthogonal to domain-specific techniques and can be applied to different use cases without
additional changes.

Continuous learning for ML analytics. Another line of work that gets increasingly more attention
nowadays is continuous learning in ML analytics [39, 119, 146]. Ekya [39] jointly schedules and
allocate resources to ML retraining and inference to handle data drift. RECL [119] integrates model
reusing with model retraining to quickly adapt to a lightweight expert DNN model for each specific
video scenes. Techniques leveraging continuous learning is complementary to Vulcan and can be
applied to Vulcan’s online adapation phase. On the other hand, Vulcan’s design can be applied
to those works as well, including dynamically updating query configurations and fast detection of
data changes by monitoring utility changes.

Reducing cost of ML analytics via filtering. There have been recent studies on applying different
types of filtering techniques to reduce the resource consumption of ML analytics without compro-
mising accuracy [114, 98, 147, 94, 47]. NoScope [114] searches for and trains a cascade of models
that preserves the accuracy of the ML inference but with far less computation cost. Focus [98] uses
cheap convolutional network classifiers (CNNs) to construct an approximate index of all possible
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object classes in the video frame, which reduces the use of expensive CNNs during query time.
Probabilistic Predicates [147] constructs and applies binary classifiers to filter out data blob that
will not pass query predicate and thus accelerate queries with expensive user-defined functions.
Vulcan builds up on the idea of applying filtering and propose a novel technique to order the filters
for ML pipelines.

4.8 Conclusion

Serving live ML analytics involves constructing, placing, and configuring ML pipelines as well as
their online adaptation. However, existing query planning solutions for live ML queries remain
elusive with piecemeal and sub-optimal. We present Vulcan, an ML analytics system that performs
automatic query planning for live ML analytics. Vulcan automatically construct the pipeline and
determine the best ordering of filtering operators for query performance. It efficiently explores
placement choices by reusing of intermediate pipeline profiling results, and leverage Bayesian
optimization with prior knowledge to handle query configuration and online adaptation. Vulcan
outperforms state-of-the-art solutions on profiling time, query latency, and resource consumption
when serving queries with real-world datasets.
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CHAPTER 5

Mercury: QoS-Aware Tiered Memory System

Finally, we move our research interests back to the datacenter and study QoS in computer memory.
Tiered memory systems, especially those enabled by CXL, have become a popular choice to increase
memory capacity to satisfy the increasing memory demand in cloud applications. Compared to
traditional single-tier memory systems, tiered memory systems can accomodate more applications
without losing much performance, as long as applications’ hot memory can be quickly identified
and moved to the fast memory tier (e.g., local DRAM) in the system. In this chapter, we introduce
Mercury, a QoS-aware tiered memory system we build to provide better QoS guarantees for
memory-intensive applications.

The remaining of this chapter is organized as follows. Chapter 5.1 introduces Mercury. Chap-
ter 5.2 explains why the existing tiered memory systems lack QoS support. In Chapter 5.3, we
perform a detailed analysis on two sources of performance unpredictability in tiered memory sys-
tems. Chapter 5.4 and Chapter 5.5 describe the system overview and design details of Mercury.
Our evaluation results are discussed in Chapter 5.6, followed by a discussion of related work in
Chapter 5.7. We finally conclude Mercury in Chapter 5.8.

5.1 Introduction

With the increasing memory demands of datacenter applications, tiered memory systems have
widely been adopted to replace DRAM-only systems [151, 184, 222, 72, 194, 133]. Many recent
tiered memory systems are enabled by Compute Express Link (CXL) [15], which is a high-speed
interconnect standard that allows memory capacity to grow by attaching more memory to the
CPU, without losing nanosecond-scale memory access latency. The increased memory capacity
enables deployments of more memory-intensive applications that fall into two broad categories:
(1) latency-sensitive (LS) applications such as in-memory key-value store [17, 18] that require low-
latency memory access, and (2) bandwidth-intensive (BI) applications such as large-memory ML
models (e.g., long-context language models or recommendation models [163, 189]) that require a

92



sustained memory bandwidth.
In production environments, running a single application on a tiered memory system wastes

both memory capacity and bandwidth. As a result, multiple memory-intensive applications often
have to share the tiered memory system to maximize resource utilization and improve total cost of
ownership (TCO) [151, 72, 133, 194, 166].

Existing research on tiered memory systems primarily focuses on page temperature monitor-
ing and efficient page migration to better utilize local memory resources (i.e., fast-tier DRAM)
[184, 222, 121, 151, 20, 116]. However, these solutions optimize a single application running on
a single server. They are not built with Quality-of-Service (QoS) support and thus cannot react to
applications with different service level objectives (SLOs). In particular, existing tiered memory
systems suffer from great performance unpredictability due to two reasons. First, multiple appli-
cations can contend for local memory (i.e., fast-tier memory), and the ones with hotter memory
get more resources. As a result, a low-priority application may grab more local memory than
a high-priority application, leading to priority inversion (§5.2.1). Second, high memory band-
width generated by BI applications can hurt the performance of coexisting LS applications on the
same tier or even across tiers – we refer to these phenomena as intra- and inter-tier interference,
respectively. To the best of our knowledge, no existing solutions have systematically tackled band-
width interference across tiered memory, including the recent proposal on QoS support for tiered
memory [72].

In this chapter, we aim to provide predictable performance for applications with different SLOs in
the presence of local memory contention and memory bandwidth interference. However, achieving
this goal faces the following unique challenges. First, it requires an efficient way to track and
control memory resources on each memory tier, but the memory control mechanisms in existing
operating systems (OSes) are not designed for tiered memory. Second, it is non-trivial to determine
the amount of memory to allocate to each application in each tier while simultaneously maximizing
resource utilization to accommodate more applications. For example, in the case of a BI application
with a loose SLO, although migrating some of its local memory to CXL memory can save local
memory for another LS application, too much migration may incur inter-tier interference, leading
to SLO violations. Finally, an application’s workload can change after its deployment, calling for
an efficient approach toward performance monitoring and real-time adaptation.

We present Mercury, a QoS-aware tiered memory system that provides predictable performance
for memory-intensive applications. Mercury incorporates the following key ideas to overcome the
aforementioned challenges:

(1) Mercury enforces application-level resource management by enabling per-tier page reclama-
tion. This allows Mercury to control an application’s available local memory while still leveraging
existing page migration designs.
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Figure 5.1: Unpredictable performance of Redis and DLRM as they compete for local memory on
the fast tier. Existing solutions cannot distinguish among applications when migrating their hot
pages, and thus cannot provide QoS guarantees.

(2) Mercury includes a novel admission control algorithm to determine the right amount of
resources for applications to satisfy SLOs with the goal of maximizing local memory utilization
while mitigating memory bandwidth interference.

(3) Mercury provides real-time adaptation to unpredictable memory and bandwidth changes,
preventing sudden system burdens while maximizing the number of applications meeting their
SLOs based on priority.

We evaluate Mercury’s effectiveness in providing QoS using real-world applications and find that
Mercury can closely track SLOs at different memory access latency and bandwidth targets. More
importantly, Mercury is able to handle local memory contention as well as memory bandwidth inter-
ference at various multi-tenant settings, achieving up to 53.4% better application performance than
TPP while satisfying more applications’ SLO. Mercury also achieves 8.4× longer SLO satisfaction
time than TPP in a long-running experiment to handle real-time workload changes.

We make the following research contributions:
• We conduct a thorough QoS analysis on production-ready tiered memory systems, including

local memory contention and memory bandwidth interference, and draw new observations.
• We propose a novel admission control and real-time adaptation algorithm tailored for tiered

memory systems to achieve different SLOs for coexisting applications.
• We implement a new kernel-level resource management scheme to control resources on tiered

memory.

5.2 Lack of QoS Support in Tiered Memory

We start by introducing why existing multi-tiered memory systems lack QoS support. There are
two root causes for unpredictable performance when multiple applications coexist – local memory
contention (§5.2.1) and memory bandwidth interference (§5.2.2).

94



Alone w/ llama
0.0

0.5

1.0

1.5

R
ed

is
 T

hr
ou

gh
pu

t
(N

or
m

al
iz

ed
)

1

0.565

Alone w/ Redis
0.0

0.5

1.0

1.5

lla
m

a.
cp

p
La

te
nc

y 
pe

r T
ok

en
(N

or
m

al
iz

ed
)

1 0.875

(a) Intra-tier Interference
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(b) Inter-tier Interference

Figure 5.2: llama.cpp’s memory bandwidth creates interference, resulting in a significant drop in
the throughput performance of Redis. (a) shows intra-tier interference when llama.cpp is on the
same fast tier with Redis. (b) shows inter-tier interference after all llama.cpp’s memory is migrated
to CXL.

Characterizing applications. In this work, we classify applications into two types: (1) Latency-
sensitive (LS) applications that desire low memory access latency, and (2) bandwidth-intensive
(BI) applications that require sustained memory bandwidth. Both types of applications can be
deployed onto the same server to increase system-level memory utilization. We do not assume LS
applications are always more important than BI applications, and vice versa.

Hardware Specifications. Our motivating experiments run on dual-socket AMD Genoa servers
each having 96 physical CPU cores and 12 channels of DDR5 memory per socket. CXL memory
is enabled via memory expansion cards with four channels of DDR4 memory. The total memory
footprint of a single server is 1.8TB; each socket has 768GB DDR5 and CXL memory has 256GB
DDR4 memory.

5.2.1 Local Memory Contention

The core design principle of multi-tiered memory systems is to keep hot pages on local memory (i.e.,
DRAM on the fast tier) while migrating cold pages to the slower tier [184, 222, 121, 151, 20, 116, 72].
However, as multiple applications have to share tiered memory to fully utilize the local memory
and bandwidth capacity, such a design does not distinguish among applications with different SLO
targets, and thus can not provide QoS guarantees. For example, a low-priority application with a
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large amount of hot memory can still compete for local memory, hurting the performance of more
important applications. Figure 5.1 illustrates this issue with two real-world applications, Redis [18]
and Deep Learning Recommendation Model (DLRM) [163] on a real CXL-based tiered memory
setup (without GPUs) used in a production-ready cluster. We enable TPP [151], the state-of-the-art
multi-tiered memory system, to handle the page migration mechanism between local memory (the
fast tier) and CXL memory (the slow tier). We configure the applications such that the sum of their
working set size (WSS) is greater than the available local memory on the fast tier. The throughput
of Redis drops by 36% due to insufficient local memory, as DLRM is competing for local memory
at the same time. An ideal QoS-aware memory system should be able to allocate the right amount
of local memory to each of the applications based on their QoS target.

5.2.2 Memory Bandwidth Interference

Another source of performance unpredictability is memory bandwidth interference, where ap-
plications with high memory bandwidth affect the performance of coexisting latency-sensitive
applications. The problem is further complicated in tiered memory systems, where applications
can generate bandwidth with memory requests accessing different memory tiers. We identify two
types of memory bandwidth interference – intra-tier interference and inter-tier interference.
Intra-tier interference refers to the one happening on the same tier, which is also common in con-
ventional, single-tier systems [165, 161, 142, 48]. Inter-tier interference occurs when excessive
memory requests on one memory tier cause a slowdown of requests on another tier. Figure 5.2
illustrates both types of interference by colocating llama.cpp [16] inference tasks (without GPUs)
and Redis. Redis’s throughput degrades by 43.5% when llama.cpp is generating a high memory
bandwidth on the same fast tier in Figure 5.2a. We then migrate all llama.cpp’s memory to CXL
memory and observe even worse Redis performance (dropped by 70%) due to inter-tier inference
(Figure 5.2b).

Existing solutions on mitigating memory bandwidth interference work either (1) on the memory
request level, such as memory request prioritization [165] or memory channel partitioning [161],
or (2) on the CPU core level to throttle memory bandwidth from best-effort tasks [48, 142]. The
request scheduling approaches assume a single-tier memory tier and do not work across multiple
tiers. The CPU throttling approaches are agnostic to multiple memory tiers and thus cannot resolve
inter-tier interference.

Mitigating interference plays an important role in providing SLO guarantees for LS applications.
In the meantime, we also want to provide QoS for BI applications and meet their bandwidth SLO
whenever possible. An ideal solution should mitigate interference by migrating pages off the tier
experiencing interference while leveraging additional bandwidth in other tiers to satisfy SLOs
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(b) Impact on Bandwidth Performance

Figure 5.3: Latency and bandwidth performance at different CXL interleaving ratios to illustrate
the impact of local memory.

of bandwidth-intensive applications. However, such migration is not straightforward given the
existence of inter-tier interference, as we will show in our detailed analysis in the following section.

5.3 QoS Analysis in Tiered Memory

In this section, we quantitatively analyze how local memory contention and memory bandwidth
interference affect application performance and draw key insights to design Mercury. All results
are collected on the same CXL-based tiered memory system as in Section 5.2.

5.3.1 Impact of Available Local Memory

We start by studying the impact of available local memory on application performance, as ap-
plications can easily run short of local memory during memory contention. We develop two
microbenchmarks to represent LS and BI applications, which we denote as LS and BI in Section ??
for brevity. LS performs random memory access among a 4GB memory region. BI allocates
enough CPU cores to generate memory bandwidth at maximum capacity on 128MB region per
core. These microbenchmarks allow us to easily control the proportion of memory access on CXL
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Figure 5.4: Performance of LS when BI is generating bandwidth at different CXL interleaving
percentage. Migrating BI to CXL does not always lead to better performance of LS due to inter-tier
interference. BI’s performance is very close to Figure 5.3b and omitted in the interest of space.

memory (the rest goes to local memory), which we denote as the CXL interleaving percentage.
Figure 5.3 shows the impact of available local memory on latency and bandwidth performance by
varying the CXL interleaving ratio of the two microbenchmarks. We observe the memory access
latency of LS is proportional to its available local memory, and it becomes 2× slower when all
memory is moved to CXL in the worst case. On the other hand, BI’s bandwidth performance
degrades as more memory is accessed from CXL, dropping to 25% of its original performance
when all memory is accessed via CXL.

Takeaway #1: Local memory directly affects the performance of both types of applications and
should be allocated judiciously during memory contention.

5.3.2 Deep Dive in Memory Interference

We now take a close look at how LS applications are affected by memory bandwidth interference
from BI applications.

Varying BI across tiers. In this experiment, we configure LS to always access local memory and
vary BI’s CXL-interleaving percentage. The results are shown in Figure 5.4, and we make two key
observations. First, as more bandwidth is generated on CXL, instead of a monotonic change, the
performance of the LS application initially decreases and then increases. Second, the interference
becomes the worst when all memory bandwidth is generated from CXL, even though the total
memory bandwidth is the lowest at this moment.

To explain the behavior in the last experiment, we need to understand how memory requests are
handled in a tiered memory system. Figure 5.5 presents a high-level diagram. There exist separate
fixed-size queues in the hardware for memory requests to/from local and CXL memory. Initially,
when bandwidth on local memory is high, its corresponding queue fills up, causing interference on
local memory (i.e., intra-tier interference) to dominate. When BI starts to move requests from local
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Figure 5.5: Architectural diagram of how memory requests are handled in CXL-based tiered
memory.
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Figure 5.6: Performance of LS at different CXL interleaving ratios when BI is fixed on local
memory. Migrating more requests away from local memory does not improve performance as
more requests are accessing the slower tier.

memory to CXL, intra-tier interference decreases, causing latency to drop. When more requests
are moved to the CXL side, the queue holding CXL requests builds up. Since both types of requests
are handled by the same set of CPU cores, busy processing of the CXL requests can slow down the
concurrent requests for local memory.

Takeaway #2: We should determine the right amount of memory to migrate BI applications that
reduces intra-tier interference while keeping inter-tier interference low.

Varying LS across tiers. Figure 5.6 shows the results of interference in a different setting, where
we keep BI fixed on local memory and vary LS’s CXL interleaving percentage. This is used to
simulate the scenario where one attempts to mitigate the interference on the fast tier by migrating
LS’s requests away from local memory to CXL memory. However, such an approach leads to worse
performance because more memory requests are now accessing the slow tier.
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Takeaway #3: We should proactively mitigate the interference on local memory to provide
predictable performance for LS applications.

5.4 Mercury Overview

With multiple applications sharing a tiered memory, our goal in this work is to provide predictable
performance among applications with different SLOs under memory resource contention and
memory interference. We first discuss our design principles, followed by a system overview of
Mercury.

5.4.1 Design Principles

QoS granularity. The first question we ask is at what granularity should we support QoS and
manage memory resources? There exist multiple levels where QoS can be enforced, such as
(1) an entire application, (2) individual data structures, (3) individual mmap() calls, or even (4)
individual memory accesses. Although finer granularity allows more precise QoS assignments
across different segments of the application, we build Mercury on the application level due to (1)
easy deployment without modifying applications, (2) a clean QoS interface, and (3) low overhead
in managing memory resources and performance monitoring. Moreover, providing QoS on the
application level also allows us to reuse existing kernel mechanisms for identifying and migrating
hot and cold pages, which has proved to be efficient [151].

Choice of performance indicators. Selecting the right performance indicators is critical for pro-
viding QoS, as Mercury needs to react quickly to meet applications’ requirements. In Mercury,
we prefer low-level metrics as performance indicators compared to application-level performance
metrics. Low-level metrics can be collected via hardware-based PMU counters. Their measure-
ments require no application modification, and as we will soon show, they closely reflect the
application performance and can react faster to real-time workload changes (§5.6). In particular,
we collect memory access latency and memory bandwidth per application. Memory access latency
is measured using memory load events from L3 cache misses provided by AMD processor’s In-
struction Based Sampling (IBS) [70] mechanism. On the AMD platform, bandwidth is measured
by µProf [26]. For intel platforms, Mercury can be applied through processor event-based sampling
(PEBS) [14] where bandwidth can be measured via Intel Platform QoS (PQoS) [5].

Memory resource allocation. Instead of overprovisioning resources to handle worst-case overload
scenarios, we decide to dynamically allocate the right amount of resource that can satisfy an
application’s SLO. This allows Mercury to accommodate more applications while meeting their
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Figure 5.7: High-level system overview of Mercury. The memory profiler and the admission
control determine the right resource to allocate for applications. Real-time adaptation dynamically
adjusts resource allocation during runtime. The resource controller tracks and controls resources
at the application level.

SLO. Following this design principle, Mercury provides QoS via a combination of admission control
and real-time adaptation. The former admits applications using the right amount of resources, and
the latter adjusts resource allocation for applications when runtime workload changes affect QoS.

Prioritization. When multiple memory-intensive applications coexist, there is no guarantee that we
will always have enough resources to satisfy everyone’s SLO. For example, an important application
may arrive later than less critical ones, and/or an application may require more resources to fulfill
increasing load. To this end, Mercury leverages strict priority to ensure high-priority applications
get guaranteed performance even when the tiered memory runs out of resources.1 We choose to
apply a separate priority scheme on top of SLOs because more stringent SLOs do not always mean
higher priority, and BI applications are not necessarily less important than LS ones. In Mercury,
priority levels are uniquely assigned to avoid ties among applications.

5.4.2 System Overview

Figure 5.7 presents a system diagram of Mercury. Its design includes a profiler, an admission
control algorithm, and real-time adaptation in the user space, as well as a memory resource
controller implemented inside the Linux kernel.

A Mercury user (e.g., a cluster operator) submits an application along with a list of information,

1Lower priority applications that yield (part of) their resources to higher priority ones continue to run as best-effort
to preserve work conservation.
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including the number of CPU cores, memory requirement, application type, its priority level, and
the SLO. The SLO of LS applications specifies a memory access latency target, and that of BI
ones is a maximum memory bandwidth the application needs.

Mercury proactively controls two types of resources, available local memory and cpu utiliza-
tion on the application level. Since the existing kernel mechanism on memory usage tracking and
controlling does not distinguish among different tiers, Mercury enables per-tier page reclamation
to control an application’s available local memory (§5.5.1). Mercury adopts existing Linux page
LRUs and NUMA Balancing [2] for page temperature detection and migration.

When Mercury receives the application, it first profiles offline to find the minimum amount
of memory resource needed to satisfy the SLO when running in isolation (§5.5.2). The profiler
also provides users with an API to measure the two SLO metrics (i.e., memory access latency and
memory bandwidth) to help users set an appropriate SLO. After profiling, Mercury’s admission
control determines whether the new application should be admitted onto the node, and if so, how
much resource we should allocate to the application, along with any changes to the existing resource
allocation of other applications based on the application’s priority level (§5.5.3). Mercury keeps
monitoring an application’s performance during its lifetime and performs real-time adaptation on
its resource allocation to ensure SLO is maintained in case of workload change and bandwidth
interference (§5.5.4).

5.5 Mercury Design

This section describes the details of Mercury design. We start with its application-level resource
management, followed by how Mercury provides QoS with its memory profiling, admission control
algorithm, and real-time adaptation.

5.5.1 Application-Level Resource Management

Mercury manages two resources – local memory and CPU utilization – to enforce SLO. The
available local memory for an application determines the ratio of memory accesses on local v.s.
CXL memory, which directly affects an LS application’s performance. As local memory is limited
and shared among all applications, Mercury decides for each LS application a local memory limit
based on their SLO. Limiting an application’s local memory can also adjust its bandwidth, as
accessing more memory from a slower tier decreases the aggregate bandwidth. Meanwhile, it saves
additional local memory to accommodate other applications. However, this approach alone is not
enough to control an application’s bandwidth for two reasons. First, placing too many memory
requests on CXL memory creates inter-tier memory interference (§5.3.2). Second, the bandwidth
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cannot be tuned further down after migrating all pages to CXL memory (Figure 5.3b). Therefore,
Mercury also limits the CPU utilization of BI applications in addition to local memory limit in
order to achieve a finer-grained control over bandwidth.

After deciding what resources Mercury manages for applications, the next step is to seek an
efficient way of tracking and controlling those resources. The existing Linux kernel provides
cgroup [4] to track and limit the memory and CPU usage of a collection of processes. However,
the memory control mechanism in cgroup cannot be directly applied in Mercury, as it does not
distinguish among different memory tiers when tracking and controlling memory usage. Instead,
one can only specify a total memory limit that accounts for the total memory usage across all tiers
for a given process.

Modifications to Linux cgroup. We make a series of modifications on cgroup to enable per-tier
memory tracking and control. While observing the total memory usage of an application, we break
it down into individual tier-level usage. In a CXL-enabled tiered memory system, memory nodes
appear to the system as separate NUMA nodes. We can thus assume that each tier consists of one
or multiple NUMA nodes. In this regard, we enhance the existing cgroup to track the list of pages
within each LRU associated with the NUMA nodes across a specific memory tier. We, therefore,
introduce a new memory limit-controlling interface, memory.per_numa_high, that controls the
max memory usage for an application on each NUMA node. Note that memory.per_numa_high
works concurrently with the global cgroup interface, memory.high, whereas the latter controls
the total system-wide memory usage of an application. In contrast, our interface restricts the
contribution of an application’s memory footprint on each memory tier.

When allocating pages, Mercury uses Linux’s default “allocate on fast memory tier first" page
allocation policy unless specified otherwise. However, if the memory usage of a NUMA node
within a specific memory tier exceeds its memory.per_numa_high threshold, Mercury stops
memory allocation and initiates page reclamation only on that NUMA node. Here, the default
reclamation mechanism is to demote (i.e., page migration) to the next available memory tier.
Moreover, a change to memory.per_numa_high (e.g., by Mercury or system admins) immediately
triggers reclamation across all the nodes where the new limit is below the current memory usage.
Similar to TPP [151], we leverage NUMA Balancing [2] to allow page promotion among different
nodes.

Mercury controls CPU utilization of an application using native cgroup’s cpu.max interface,
whose value adjusts the utilization among all CPU cores the application uses. Details of how
Mercury selects an application’s local memory limit and CPU utilization to provide QoS will be
described next.
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5.5.2 Memory Profiler

Before deploying an application, we first need to determine the right amount of memory resource
needed to meet its SLO to provide QoS for more applications. In Mercury, this task is handled by
the memory profiler.

Taking a user application and its SLO as inputs, the profiler finds the right amount of local
memory the application needs to satisfy its SLO when running in isolation. For both types of
applications, it starts by putting all their memory on the fast tier with full CPU utilization. If the
SLO is not met even at this initial stage, the application is marked as inadmissible; the user should
adjust the SLO or deploy it on another machine with larger memory or bandwidth. Otherwise, the
profiler decreases its local memory limit until the measured performance matches the SLO. For BI
applications, if the actual bandwidth is still above the SLO after the local memory limit drops to
zero, the profiler starts to decrease CPU utilization until the SLO is met.

Note that the local memory limit found during profiling represents the minimum memory the
application needs in isolation and is used for admission control (§5.5.3) to determine the local
memory and CPU utilization to allocate during deployment. Mercury also records the profiled
memory bandwidth for BI applications, which represents the target bandwidth to meet its initial
load during admission.

Mercury also performs a one-time profiling per machine to characterize memory bandwidth in-
terference, which will later be used by our admission control and real-time adaptation. Specifically,
Mercury determines two thresholds, (i) a threshold on healthy local bandwidth (𝑇ℎ𝑟𝑒𝑠ℎ𝑙𝑜𝑐𝑎𝑙_𝑏𝑤)
and (ii) a threshold on the rate of remote NUMA hint fault (𝑇ℎ𝑟𝑒𝑠ℎ𝑛𝑢𝑚𝑎), to monitor whether the sys-
tem has reached the boundary of triggering severe intra-tier and inter-tier interference. The profiler
leverages the LS and BI microbenchmarks (§??) to perform this task. To determine𝑇ℎ𝑟𝑒𝑠ℎ𝑙𝑜𝑐𝑎𝑙_𝑏𝑤,
the profiler launches both LS and BI on the fast tier, and increases BI’s bandwidth until a noticeable
interference on LS’s latency is found. Similarly, 𝑇ℎ𝑟𝑒𝑠ℎ𝑛𝑢𝑚𝑎 is determined by sweeping the CXL
interleaving percentage of BI until an obvious performance degradation is observed on LS running
on the fast tier (10% performance degradation is set for both thresholds in our implementation).

5.5.3 Admission Control

Admission control ensures that admitted applications can coexist well in a shared tiered memory
system. A naïve solution is to take each incoming application’s profiling result and keep deploy-
ing applications until local memory or bandwidth capacity runs out (i.e., first-come-first-service
(FCFS)). However, this has two drawbacks. First, a critical application may arrive late, only to find
the resources have been taken by other less critical applications. Second, it does not consider the
impact of bandwidth interference, which can lead to SLO violation. In Mercury, we design a new
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admission control algorithm tailored for tiered memory. It leverages strict priority scheme to pri-
oritize important applications, and maximizes local memory utilization to admit more applications
while avoiding intra-tier and inter-tier interference.

Algorithm 4 describes Mercury’s admission control. At the arrival of a new application, Mercury
first checks if it is labeled as inadmissible by the profiler. If that is the case, Mercury immediately
drops this application since its SLO (either latency or bandwidth) can never be met (lines 3-4).
Otherwise, Mercury starts to assign resources based on the application type, as we describe below.

Admitting LS applications. Mercury directly admits an LS application if there is available local
memory to satisfy its profiled local memory requirement. Otherwise, Mercury tries to find another
existing application with a lower priority to yield local memory, starting from the one with the
lowest priority (lines 7-8). However, yielding another application’s memory means moving more
of its requests to CXL memory, which has a risk of causing inter-tier interference when the victim
is bandwidth-intensive (§5.3.2). Therefore, Mercury monitors the rate of NUMA hint faults and
compares it with 𝑇ℎ𝑟𝑒𝑠ℎ𝑛𝑢𝑚𝑎 obtained from profiling (§5.5.2). If the threshold is met, Mercury
stops decreasing the local memory limit of the victim application, as migrating more of its memory
to CXL memory will cause inter-iter interference that harms latency performance. Instead, Mercury
will reduce CPU utilization for BI apps with lower priority than the incoming app, in ascending
order, until we are below 𝑇ℎ𝑟𝑒𝑠ℎ𝑛𝑢𝑚𝑎 (lines 9-10).

Mercury repeats this process until enough memory is yielded. If the victim application’s local
memory limit drops to zero, Mercury moves on to the next victim until no existing applications
with lower priority can yield local memory.

Admitting BI applications. Given a BI application, the goal is to assign the right amount of
local memory and CPU utilization to satisfy its bandwidth SLO. Mercury starts by assigning local
memory to BI applications in the same way as it does to LS ones (lines 6-12). However, assigning the
profiled local memory to the incoming application does not always mean it can achieve its bandwidth
SLO, as existing applications may have already taken a large portion of the total bandwidth capacity.
Under this scenario, Mercury finds existing BI applications with lower priority to yield bandwidth.
This is done by decreasing the local memory limit of the victim application(s). During this process,
Mercury checks the current rate of remote NUMA hint faults and avoids inter-tier interference
by switching to decreasing the victim application’s CPU utilization once 𝑡ℎ𝑟𝑒𝑠ℎ𝑛𝑢𝑚𝑎 is exceeded
(lines 16, 26-27). In the meantime, Mercury watches out for potential intra-tier interference when
bandwidth on the fast-tier becomes too high. This is verified by checking two conditions: (1) there
exist LS applications with higher priority, and (2) the healthy bandwidth threshold (𝑡ℎ𝑟𝑒𝑠ℎ𝑙𝑜𝑐𝑎𝑙_𝑏𝑤,
§5.5.2) for the fast tier is exceeded. If both are met, Mercury stops assigning bandwidth on the fast
tier to the incoming application (line 15, details omitted in Algorithm 4 for brevity).
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app.mem_limit     max(app.mem_limit - 𝛼, 0)
app.cpu_util     max(app. cpu_util - 𝛽, 0)
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GetLocalMem(app) < app.mem_limit                 OR
Alloc_mem == 0  
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If v.mem_limit == 0:
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Figure 5.8: Procedure of real-time adaptation.

5.5.4 Real-time Adaptation

Although our memory profiling and admission control provide a good estimation of how many
resources to assign to applications during launch time, we may still experience SLO violations in
two scenarios. First, the amount of resource applications need to maintain their SLO can change over
time due to workload changes. Second, LS applications may still be affected by minor interference
when BI applications’ bandwidth sits around one of the two interference thresholds. Mercury
should adjust resource allocations quickly to ensure QoS guarantees for critical applications in such
scenarios.

Figure 5.8 describes the flow of Mercury’s real-time adaptation. Mercury periodically checks
the performance signals (i.e., memory access latency for LS applications, and memory bandwidth
for BI applications) every 200ms and verifies if they meet SLO. To ensure critical applications
receive guaranteed performance, we check applications in the order of higher priority levels. If
the measured performance of the target application is better than SLO, Mercury retrieves excessive
resources by decreasing its local memory limit until the performance is back to expectation again.
Similar to our admission control, Mercury watches out for inter-tier interference during this process
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(by checking 𝑡ℎ𝑟𝑒𝑠ℎ𝑛𝑢𝑚𝑎) to prevent too many requests from accessing CXL memory. In the case
of a BI application, Mercury starts to decrease its CPU utilization when its local memory limit hits
zero.

It is more challenging when the measured performance is worse than SLO, as there may
be multiple possible causes. Mercury takes a series of actions to identify the right cause and
make adjustments. Mercury first decreases the bandwidth of low-priority applications until no
performance improvement can be detected. This step verifies if the performance drop is caused
by bandwidth interference. Since all applications go through our real-time adjustment in the
order of priority, Mercury ensures the BI application that generates excessive bandwidth will
eventually be punished, and other BI applications will retain SLO if there is enough bandwidth.
After the bandwidth check, if the measured performance is still worse than SLO, we are certain
the target application needs more resources due to a workload change. In this case, Mercury
allocates resources based on the type of the target application. Given a BI application, Mercury
first increases its CPU utilization before increasing its local memory limit to ensure local memory
is maximized among all applications. For an LS application, Mercury directly increases its local
memory limit. Similar to the way in admission control, Mercury finds the local memory from
low-priority applications in ascending order of the priority level.

5.6 Evaluation

We evaluate Mercury’s capability of providing QoS among applications sharing a tiered memory
system, in the presence of local memory contention, bandwidth interference, and dynamic workload
changes. Our key findings are as follows:

(1) Mercury closely tracks SLOs for both LS and BI applications by allocating right amount of
resources (§5.6.2).

(2) Mercury effectively handles local memory contention and bandwidth interference, achieving
up to a 53.4% improvement compared to TPP (§5.6.3- §5.6.5).

(3) Mercury’s real-time adaptation mechanism accurately reallocates resources to prioritize crit-
ical applications during runtime workload changes, resulting in 8.4× longer SLO satisfaction
time compared to TPP (§5.6.6).

5.6.1 Experiment Setup

We implement Mercury’s resource management module on Linux kernel v6.6. Mercury’s user
space components are written in C++ with 3000 lines of code.
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We illustrate Mercury’s effectiveness in providing QoS using four real-world applications (Ta-
ble 5.1):
• Redis (LS): a widely used in-memory database. We launch memtier_benchmark [3] to generate

a realistic workload.
• vectorDB (LS): a vector database implemented using the Faiss library [68] with FlatL2 [123]

and HNSWFlat [148] indices. Each client request contains a query of 10 nearest neighbors of
randomly generated vectors.

• DLRM (BI): a popular deep learning recommendation model, running on Criteo Kaggle Display
Advertising Challenge dataset [105]. Compared to the setting in §5.2.1 which targets low serving
latency, we use another practical throughput-intensive setup where providers use a larger number
of embeddings, causing high bandwidth.

• llama.cpp (BI): a C/C++ implementation of inference for large language models including
LLaMA [213]. We run llama.cpp on local and CXL memory with the Llama 2 70B - GGUF
model [155].

Emulation environment. We run experiments on dual-socket Intel Xeon Gold 6330 servers with 56
physical CPU cores. Each socket contains 512GB DDR4 memory. We emulate CXL by disabling
all cores in one socket while keeping its memory accessible from the other socket, a method widely
adopted in current CXL research [133, 151]. In the meantime, we reduce the uncore frequency on
the server to match the memory access latency from the isolated socket to the latency of accessing
the same CXL setup in §5.2 and §5.3.

We compare all the experiments with TPP [151], a state-of-the-art open-source tiered memory
system. Each experiment is run five times, and the average measurements are reported.

5.6.2 SLO Compliance

We start by evaluating how closely Mercury tracks SLOs of both types of applications. We first look
at simple scenarios where a single application is running and leave more complicated multi-tenant
settings in the follow-up subsections. Figure 5.9a records the achieved memory access latency of
Redis at different SLOs, along with the local memory limit (recorded as the percentage w.r.t its
20GB WSS) Mercury sets. Mercury is able to closely track the SLO by assigning the right amount
of local memory.

Mercury is also good at tracking the SLO for BI applications. Figure 5.9b shows llama.cpp’s
bandwidth performance and its resource allocation by Mercury under different SLOs. When
bandwidth SLO is small (e.g., 30GB/s and below in this experiment), Mercury further decreases
its CPU utilization, as merely migrating all memory to CXL memory(by setting the local memory
limit to zero) still achieves higher bandwidth than needed. Note that in this case, Mercury does
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Figure 5.9: Mercury provides SLO compliance on both memory access latency (for Redis) and
bandwidth (for llama.cpp).

not limit its migration for inter-tier interference, as there is no other LS application running in the
system.

5.6.3 Handling Local Memory Contention

Next, we move on to multi-tenant settings and evaluate how Mercury handles local memory
contention. This experiment involves a high-priority Redis process running together with a low-
priority vectorDB-FlatL2 workload configured as an LS application. We set the SLO of Redis
and vectorDB to be 160ns and 200ns, respectively. The WSS of Redis and vectorDB are both
set to 20GB, and we configure the local memory capacity to be 20GB as well to create local
memory contention. Figure 5.10 compares the average memory access latency and application-
level performance between TPP and Mercury. TPP fails to achieve the SLO for Redis, as TPP
cannot prevent vectorDB from stealing most of the local memory due to higher memory access
frequency than Redis, leading to priority inversion. In comparison, Mercury manages to achieve
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Figure 5.10: Comparing Mercury with TPP when handling local memory contention between Redis
and vectorDB.
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Figure 5.11: Comparing Mercury with TPP when handling memory bandwidth interference be-
tween Redis and llama.cpp.

the SLO for both applications by assigning the right amount of local memory accordingly (18GB
for Redis and 2GB for vectorDB), leading to 46% improvement in the throughput of Redis over
TPP.

5.6.4 Handling Memory Bandwidth Interference

Besides local memory contention, memory bandwidth interference is another key aspect Mercury
tries to resolve when designing its admission control. We evaluate Mercury’s effectiveness in han-
dling bandwidth interference among different combinations of applications. In those experiments,
we configure the WSS of applications such that local memory contention never happens. We
start with a high-priority Redis (20GB WSS) workload running alongside a low-priority llama.cpp
inference task, and record both low-level and application-level performance of both applications in
Figure 5.11. TPP has no control over Mercury’s bandwidth, which causes significant interference
on Redis, leading to missed SLO and worse throughput. Mercury, in contrast, mitigates bandwidth

110



SLO TPP Mercury
0

80
160
240
320
400

R
ed

is
 M

em
or

y
A

cc
es

s 
La

te
nc

y 
(n

s)

250
302

245

SLO TPP Mercury
0

25

50

75

100

D
LR

M
B

an
dw

id
th

 (G
B

/S
)

45

69.1

46.9

Ideal TPP Mercury
0

250

500

750

1000

R
ed

is
 T

hr
ou

gh
pu

t
(K

op
s/

s) 695
514

700

Ideal TPP Mercury
0

3

6

9

12

D
LR

M
 T

hr
ou

gh
pu

t
(M

Q
P

S
)

5.48

8.69

5.54

Figure 5.12: Comparing Mercury with TPP when handling memory bandwidth interference be-
tween Redis and DLRM.

interference from llama.cpp by migrating most of its memory to CXL memory (with 25.8% mem-
ory left on local), ending up with both applications’ SLO satisfied and 32.7% higher throughput of
Redis compared to TPP.

We observe a similar trend when launching Redis (10GB WSS) together with DLRM (Fig-
ure 5.12). Similar to llama.cpp, DLRM causes bandwidth interference that TPP cannot mitigate.
Mercury adjusts DLRM’s CPU utilization (64%) and local memory limit (50% of its WSS) to meet
DLRM’s SLO while minimizing both intra-tier and inter-tier interference, resulting in a 36.2%
improvement in the throughput of Redis.

5.6.5 Mixing Two Sources of Unpredictability

It is quite likely that local memory contention and memory bandwidth interference appear simul-
taneously in a real-world setting. To evaluate how Mercury performs in this case, we deploy Redis,
llama.cpp, and vectorDB-HNSW all together with a local memory capacity of 40GB. The WSS for
Redis, llama.cpp, and vectorDB is 40GB, 40GB, and 20GB, respectively. Figure 5.13 compares
Mercury with TPP on achieved low-level and application-level performance. TPP allocates almost
all local memory to Redis as Redis has the highest memory access frequency among the three
applications, whereas most of llama.cpp’s and vectorDB’s memory are placed on CXL memory.
This allocation satisfies only the SLO of Redis, as llama.cpp suffers from insufficient bandwidth,
and vectorDB’s performance degrades due to interference from llama.cpp and not enough local
memory. In contrast, Mercury satisfies the SLOs for all three applications by allocating the right
amount of memory (10GB for Redis, 20GB for vectorDB, and 10GB for llama.cpp) and managing
llama.cpp’s bandwidth to minimize interference, resulting in a 53.4% performance improvement
for vectorDB.
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Figure 5.13: Comparing Mercury with TPP when handling both local memory contention and
memory bandwidth interference among Redis, llama.cpp, and vectorDB.

5.6.6 Real-time Adaptation to Dynamic Changes

In practice, the memory or bandwidth usage of applications often changes over time. To justify Mer-
cury’s adaptability, we run Redis, llama.cpp, and vectorDB-FlatL2 together, and adjust llama.cpp’s
bandwidth and Redis’s memory usage. The WSS for Redis, llama.cpp, and vectorDB is 30GB,
40GB, and 40GB, respectively, with the local memory capacity constrained at 70 GB. The priority
level of the applications in descending order is Redis, llama.cpp, and vectorDB. We set the SLO
for Redis, llama.cpp, and vectorDB to be 200ns, 70GB/s, and 180ns.

Initially, Redis and llama.cpp launch together without memory contention or bandwidth interfer-
ence. When Mercury detects llama.cpp’s load arrives at 𝑡 = 60𝑠, it quickly mitigates its bandwidth
interference to ensure Redis can still maintain its SLO, as Redis has higher priority. TPP, on the
other hand, gives full bandwidth capacity to llama.cpp, causing severe interference that violates
the SLO of Redis. After 1100 seconds, llama.cpp’s task finishes. We launch vectorDB and start
to gradually increase the load of Redis. The increase in the memory usage of Redis causes local
memory contention. Under TPP, Redis cannot acquire more memory due to lower access fre-
quency compared to vectorDB. In contrast, Mercury reallocates memory from vectorDB to Redis
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Figure 5.14: Performance of Redis, llama.cpp, and vectorDB under real-time changes. SLO
for Redis/llama.cpp/vectorDB is 200ns/180ns/70GBps, with Redis having the highest priority.
llama.cpp’s bandwidth surges during 60-1100s; Redis’s memory usage increases during 1160-
2366s.

to ensure Redis meets its SLO. Throughout this experiment, Mercury results in up to 8.4× longer
SLO satisfaction time for Redis compared to TPP and improved Redis’s throughput performance
by 33.21%.

5.7 Related Work

Tiered Memory Systems. Numerous solutions[222, 72, 184, 121] consider non-volatile memory
(NVM) to be a slow memory tier. HeMem [184] introduces a flexible, per-application memory
management policy at the user level. AutoTiering [121] addresses multi-tiered memory system
utilization by considering access tier and locality without a predefined threshold. Diverging from
NVM-focused methods, Pond [133] and TPP [151] explore CXL memory; TPP provides an OS-
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level, application-transparent mechanism for CXL memory, while Pond develops a predictive model
for latency and resource management in a CXL-based memory pool. Mercury decouples memory
temperature from application importance, allocating local memory based on SLOs and priority
and outperforming previous work that primarily considers applications with hotter pages as more
important.

QoS solutions. QoS is a full-stack concern addressed across the hardware/software stack.
Memshare [54] maximizes hit rates and provides isolation in multi-tenant web applications with a
log-structured, application-aware design. Aequitas [229] and DiffServ [40] prioritize traffic at the
network edges, with Aequitas targeting data center environments to ensure latency SLOs for RPCs.
TMTS [72] uses two metrics to meet SLOs in tiered memory systems, prioritizing LS applications.
Mercury introduces QoS management that ensures strict priority and fairness across application
types. ZygOS [181] and Perséphone [66] leverage specialized OS design to meet tail latency SLOs
for datacenter workloads. FIRM [183] leverages online telemetry data and machine-learning tech-
niques to build a fined-grained resource management framework to provide SLO guarantees for
microservices.

Interference management. Prior systems like Heracles [142] and PARTIES [48] dynamically
adjust partitions to handle memory bandwidth interference, with PARTIES providing enhanced
isolation for memory capacity and disk bandwidth. MCP [161] reduces inter-application interfer-
ence by mapping data to separate channels, while IMPS [161] prioritizes memory non-intensive
applications, which can be unfair. The FQ memory scheduler [165] prioritizes memory requests
by earliest virtual finish-time. ASM [210] minimizes memory interference by periodically giving
each application’s requests the highest priority. However, these systems do not address inter-tier
interference. Mercury is the first to combine local memory limits and CPU utilization to avoid both
intra-tier and inter-tier bandwidth interference.

Disaggregated Memory. Memory disaggregation exposes capacity available in remote hosts as
a shared memory pool. Recent RDMA-based disaggregated memory solutions [46, 216, 81, 90]
face significantly higher latency than CXL memory [87]. Memory management in these systems
is orthogonal to Mercury; one can use both CXL- and network-enabled memory tiers and apply
Mercury to manage tiered memory.

5.8 Conclusion

Tiered memory systems provides higher memory capacity to allow more memory-intensive appli-
cations to be deployed. However, existing tiered memory systems focus on optimizing a single
application, and cannot provide QoS guarantees when multiple applications sharing memory re-
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source. We present the design and implementation of Mercury, a QoS-aware tiered memory system
to provide predictable performance for coexisting memory-intensive workloads. Mercury provides
application-level resource management by enabling per-tier page reclamation inside Linux kernel.
By designing a novel admission control and real-time adapatation algorithm, Mercury maximizes
local memory utilization while mitigate both intra-tier and inter-tier memory bandwidth interfer-
ence. Mercury outperforms the state-of-the-art solution when handling local memory contention,
memory interference, and dynamic workload changes with significant performance improvement.
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Algorithm 4: Mercury Admission Control
1 Notation:

𝑝𝑄𝑢𝑒𝑢𝑒: queue of apps in ascending order of priority
𝐵𝑠𝑙𝑜,𝑠: app 𝑠’ b/w SLO, 𝑀𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒,𝑠: app 𝑠’ profiled local memory
𝛼: memory update granularity, 𝛽: CPU update granularity

2 Function DeployApp(𝑠):
3 if !IsAdmissible(s) then
4 NotAdmit(𝑠)
5 ⊲ Assign local memory for LS & BI apps
6 𝑣 ← 𝑝𝑄𝑢𝑒𝑢𝑒.𝑡𝑜𝑝()
7 while 𝑣 ≠ 𝑠 and GetLocalMemAvail() < 𝑀𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒,𝑠 do
8 YieldMem(𝑣, 𝑀𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒,𝑠 − GetLocalMemAvail())
9 while (GetNumaHintFaultRate() > Thresh𝑛𝑢𝑚𝑎) do

10 ReduceLowerPriorityAppBw(𝑝𝑄𝑢𝑒𝑢𝑒, 𝑠)
11 𝑣 ← 𝑣.next()
12 𝑠.𝑚𝑒𝑚_𝑙𝑖𝑚𝑖𝑡 ← min(GetLocalMemAvail(), 𝑀𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒,𝑠)
13 ⊲ Assign local memory & cpu util for BI apps
14 if 𝑠.𝑡𝑦𝑝𝑒 == ”𝐵𝐼” then
15 while GetAppUsableBw(s) < 𝐵𝑠𝑙𝑜,𝑠 do
16 if ReduceLowerPriorityAppBw(𝑝𝑄𝑢𝑒𝑢𝑒, 𝑠) then
17 break

18 𝑠.𝑚𝑒𝑚_𝑏𝑤 ← min(𝐵𝑠𝑙𝑜,𝑠 , GetAppUsableBw(s))
19 LaunchApp(𝑠)
20 𝑝𝑄𝑢𝑒𝑢𝑒.𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑠)
21 Function ReduceLowerPriorityAppBw(𝑝𝑄𝑢𝑒𝑢𝑒, 𝑠):
22 𝑣 ← 𝑝𝑄𝑢𝑒𝑢𝑒.𝑡𝑜𝑝()
23 while 𝑣 ≠ 𝑠 do
24 if 𝑣.𝑡𝑦𝑝𝑒 == ”𝐿𝑆” or (!𝑣.𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 and !𝑣.𝑚𝑒𝑚_𝑙𝑖𝑚𝑖𝑡) then
25 𝑣 ← 𝑣.next()
26 if !IsInterTierHealthy(𝑠) or !𝑣.𝑚𝑒𝑚_𝑙𝑖𝑚𝑖𝑡 then
27 𝑣.𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 ← max(0, 𝑣.𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 − 𝛽)
28 else
29 𝑣.𝑚𝑒𝑚_𝑙𝑖𝑚𝑖𝑡 ← max(0, 𝑣.𝑚𝑒𝑚_𝑙𝑖𝑚𝑖𝑡 − 𝛼)
30 return true
31 return false

Table 5.1: Four real-world applications used in evaluations.

Application Application Level Metric Type
Redis Operations Per Second LS
vectorDB Latency per Query LS
llama.cpp Latency Per Token BI
DLRM Queries Per Second BI
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CHAPTER 6

Conclusion

Existing system designs have been focusing on improving system performance and efficiency
to optimize single or the same type of applications running in isolation. However, as cloud
infrastructure continues to scale, multiple applications have to share cloud resource, calling for
quality-of-service support to ensure critical applications receive desired performance. This is not
an easy task, as we must also ensure high resource utilization is achieved in order not to waste cloud
resources. This requires system designers to efficiently resolve resource contention and allocate
resource in a fine-grained manner.

Over the past few years, we have identified several areas in cloud infrastructure that lack QoS
support, and have built QoS support in network interface cards, datacenter fabrics, edge devices,
and tiered memory systems. We show that it is possible to achieve predictable performance and
high utilization at the same time. Justitia (Chapter 2) provides performance isolation in KBNs
for latency- and throughput-sensitive applications, while still maximizing the link utilization for
bandwidth-intensive applications. Aequitas (Chapter 3 provides RPC network latency guarantees
among different QoS levels for critical RPCs in datacenter fabrics, and maximize the amount of
RPC traffic admitted into each QoS level. Vulcan (Chapter 4) generates optimal query plan for
live ML queries that is able to not only satisfy their accuracy and latency SLOs but also minimize
their resource consumption across edge tiers. Mercury (Chapter 5) is a QoS-aware tiered memory
systems that provides SLO to critical applications while maximizing local memory utilization on
the fast tier, such that more memory-intensive applications can be admitted.

In the rest of this chapter, we summarize the common design principles we learned when
designing the four QoS-aware systems in this dissertation, followed by a discussion of future work.
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6.1 Common Design Principles for Building QoS-aware Sys-
tems in the Cloud

Identifying source of performance unpredictability All of the QoS research in this dissertation
starts from identifying the source of performance unpredictability. This allows us to locate possible
resource contention in the system, along with other factors that affect QoS. In Justitia, we perform a
detailed analysis on performance anomalies in KNB to identify multi-resource contention inside the
NIC, along with the head-of-line blocking that hinders latency-sensitive applications. This leads
to design of the multi-resource token and message splitting in Justitia. In Aequitas, we perform
a thorough theoretical analysis on QoS distribution v.s. worst-case delay. The key design idea of
Aequitas’ distributed admission control is inspired by our theoretical results. Similarly, we follow
the same principle in Mercury and identify local memory contention and inter-tier bandwidth
interference, based on which we design its admission control and real-time adjustment algorithm.
Vulcan also benefits from this principle by discovering the impact of filtering ordering on query
performance, a key observation we leverage in constructing the ML pipeline.

Selecting the right performance indicator. Selecting the right performance indicators is critical
for providing QoS. QoS-aware systems need to monitor application performance to ensure their
SLOs are maintained, and react quickly when resource contention happens. A good performance
indicator should be easy and fast to collect, and can reflect the change of the hard-to-collect
application-level performance. Justitia leverages the reference flow to monitor latency-sensitive
applications as they themselves send sparse messages, which is too slow to detect performance
chnage. Aequtas select RPC network latency to focus on the network component of the RPC
completion time, in order to filter out other components that are not affected by network overloads.
Vulcan defines a utility function to combine query accuracy, end-to-end latency, and resource
consumption to perform multi-target optimization. Mercury selects low-level memory access
latency and bandwidth collected from hardware-based performance monitoring counters as they
are fast to collect and closely reflect application-level metrics.

Leveraging fined-grained control on resource. Fined-grained control over resource is the key
to predictable performance. An ideal resource controller should apply direct control over critical
resource in the system, and allocation should be easy and quick. Justitia contorls NIC resources via
its multi-resource token, which works on the operation level and thus efficient enough to control
ultra fast RDMA messages. Aequitas directly controls QoS distribution via its admission control,
which directly affect the delay bound for RPCs among different QoS levels. Vulcan performs
a combinations of analysis to come up with the optimal query configuration that allocate each
pipeline component’s resource based on its pipeline construction, placement, and configuration.
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Mercury determines the right amount of resource to meet SLO for both latency-sensitive and
bandwidth-intensive applications via its kernel-level resource controller.

6.2 Future Work

In this section, we discuss future directions of building QoS-aware systems for cloud applications.

Co-designing Justitia with congestion control. Although Justitia effectively complements DC-
QCN (§2.6.3) in simple scenarios, DCQCN considers only bandwidth-sensitive flows. A key future
work would be a ground-up co-design of Justitia with DCQCN [237] or TIMELY [156] to handle
all three traffic types for the entire fabric with sender- and receiver-side contentions (§2.6.5). While
network calculus and service curves [104, 208, 60, 61] dealt with point-to-point bandwidth- and
latency-sensitive flows, their straightforward usage can be limited by multi-resource RNICs and
throughput-sensitive flows. At the fabric level, exploring a Fastpass-style centralized solution [177]
can be another future work.

Application-based Aequitas While Aequitas provides SLOs for all admitted RPCs, it does not
guarantee the amount of traffic admitted on a per-application basis. The admitted traffic depends
on the number of coexisting applications, as Aequitas shares the per-QoS bandwidth. This requires
modification on the admission control, as now we need to treat all RPCs from the same application
as a united entity. One possible solution to provide application traffic rate guarantees is to leverage
a centralized RPC quota server, where applications are only allowed to use certain QoS levels with
quota. This idea also add challenges in delay bound calculation, as know we also need to consider
additional rtt to fetch the quota from the centralized server.

Multi-resource sharing among concurrent ML pipelines. Vulcan currently does not support
concurrent execution of different ML queries sharing the compute and network resource across
the edge tiers. In particular, Vulcan might not generate optimal query plans because each pipeline
is considered separately. When multiple ML pipelines shares the edge tier, the query plan given
by Vulcan can allocate multiple component to the same edge tier or network, causing resource
contention. This new direction requires even larger search space, if ones desired to find the optimal
query plan among all coexisting queries. However, it is a very practical problem for live ML queries
as ML analytics continue to scale.
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APPENDIX A

Justitia Appendix

A.1 Hardware Testbed Summary for Justitia

Table A.1 summarizes the hardware we use for different RDMA protocols in our experiments.

A.2 Characteristics of Latency- and Throughput-Sensitive Ap-
plications in the Absence of Bandwidth-Sensitive Ones

Multiple latency-sensitive applications can coexist without affecting each other (Figure A.1). Al-
though latencies increase, everyone suffers equally. All applications experience the same through-
puts as well.

Similarly, multiple throughput-sensitive applications receive almost equal throughputs when
competing with each other, as shown in Figure A.2.

Finally, throughput-sensitive applications do not get affected by much when competing with
latency-sensitive applications (Figure A.3c). Nor do latency-sensitive applications experience
noticeable latency degradations in the presence of throughput-sensitive applications except for
iWARP (Figure A.3a and Figure A.3b).

A.2.1 Adding More Competitors Exacerbates the Anomalies

The lack of protection for the latency-sensitive applications further exacerbates as more bandwidth-
sensitive applications (or equivalently more QPs) are created. We increase the number of
bandwidth-sensitive applications (each with a single QP) in our experiment to simulate more
realistic datacenter applications. Although InfiniBand performs relatively well in the presence of
a single background bandwidth-sensitive application (Figure 2.3), adding one more competitors
incurs an additional drop of 2.65× and 3.79× in median and 99th percentile latencies (Figure A.4a).
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Protocol NIC Switch NIC Capacity
InfiniBand ConnectX-3 Pro Mellanox SX6036G 56 Gbps
InfiniBand ConnectX-4 Mellanox SB7770 100 Gbps
RoCEv2 ConnectX-4 Mellanox SX6018F 40 Gbps
RoCEv2 (DCQCN) (§2.6.3) ConnectX-4 Lx Dell S4048-ON 10 Gbps
iWARP T62100-LP-CR Mellanox SX6018F 40 Gbps
RoCEv2 (DCQCN) (§2.6.5, §2.6.6) ConnectX-3 Pro HP Moonshot-45XGc 10 Gbps

Table A.1: Testbed hardware specification.
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Figure A.1: Latencies and throughputs of multiple latency-sensitive applications in InfiniBand.
Error bars (almost invisible due to close proximity) represent the applications with the lowest and
highest values.
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Figure A.2: Throughput of multiple throughput-sensitive applications in InfiniBand. Error bars
(almost invisible due to close proximity) represent the applications with the lowest and highest
values.

With 16 or more bandwidth-sensitive applications, the latency-sensitive application can barely
make any progress. We observed a similar trend in other RDMA technologies.

Similarly, a throughput-sensitive application loses 90% of its original throughput with 16
bandwidth-sensitive applications (Figure A.4b).

Those anomalies illustrate RNIC’s inability to handle multiple types of applications, which
could stem from the limited number of queues inside the RNIC hardware, increasing Head-of-Line
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Figure A.3: Performance anomalies of a latency-sensitive application running against a throughput-
sensitive application.
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Figure A.4: Impact of increasing background bandwidth-sensitive applications (sending 1MB
messages) in InfiniBand.

blocking of small messages.

A.3 Additional Evaluation Results

A.3.1 100 Gbps Results With/Without Justitia

Similar to the anomalies observed for 10, 40, and 56 Gbps networks (§2.3), Figure A.5 and Fig-
ure A.6 show that latency- and throughput-sensitive applications are not isolated from bandwidth-
sensitive applications even in 100 Gbps networks. In these experiments, we use 5MB messages
since 1MB messages are not large enough to saturate the 100 Gbps link. Justitia can effectively
mitigate the challenges by enforcing performance isolation.
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Figure A.5: [100 Gbps InfiniBand] Performance isolation of a latency-sensitive application against
a bandwidth-sensitive application.
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Figure A.6: [100 Gbps InfiniBand] Performance isolation of a throughput-sensitive application
against a bandwidth-sensitive application.

A.3.2 Real RDMA-based Systems Require Isolation

Besides DARE, highly-optimized RDMA-based RPC systems also suffer from unmanaged RNIC
resources. Here we pick two representative systems, FaSST [112] and eRPC [113], to illustrate why
they require performance isolation and how Justitia effectively achieves it. To generate background
traffic, we implemented a simple RDMA-based blob storage backend across 16 machines. Users
read/write data to this storage using a PUT/GET interface via frontend servers. Objects larger than
1MB are divided into 1MB splits and distributed across the backend servers. This generates a
stream of 1MB transfers, and the following RDMA-optimized systems have to compete with them
in our experimental setup.

FaSST is an RDMA-based RPC system optimized for high message rate. We deploy FaSST
in 2 nodes with message size of 32 bytes and a batch size of 8. We use 4 threads to saturate
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Figure A.7: Performance isolation of FaSST running against a bandwidth-sensitive storage appli-
cation.

FaSST’s message rate at 9.8 Mrps. In the presence of the storage application, FaSST’s throughput
experiences a 74% drop (Figure A.7).

eRPC is an even more recent RPC system built on top of RDMA. We deploy eRPC in 2 nodes with
message size of 32 bytes. We evaluate eRPC’s latency and throughput using the microbenchmark
provided by its authors. For the throughput experiment, we use 2 worker threads with a batch size
of 8 on each node because 2 threads are enough to saturate the message rate in our 2-node setting.
In the presence of the storage application, eRPC’s throughput drops by 93% (Figure A.8b), and its
median and tail latencies increase by 67× and 40×, respectively (Figure A.8a).

By applying Jusitita, FaSST’s throughput improves by 2.5× (Figure A.7). Justitia also improves
eRPC’s median (tail) latency improves by 56.9× (32.2×) and its throughput by 9.7× (Figure A.8).
Note that the throughput of the storage applications drops to half of the maximum throughput in
both cases because we treat the background application as a whole (and thus with equal weights to
all applications, the SafeUtil is 1

2 of the line rate), which is different from how we treat the parallel
writes in the case of Apache Crial.

A.3.3 Handling Remote READs

RDMA READ verbs can compete with WRITEs and SENDs issued from the opposite direction
(§2.4.5) Figure A.9 shows that Justitia can isolate latency-sensitive remote READs from local
bandwidth-sensitive WRITEs and vice versa.

A.3.4 Justitia vs. LITE

LITE [214] is a software-based RDMA implementation that adds a local indirection layer for RDMA
in the Linux kernel to virtualize RDMA and enable resource sharing and performance isolation. It
can use hardware virtual lanes and also includes a software-based prioritization scheme.
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Figure A.8: Performance isolation of eRPC running against a bandwidth-sensitive storage applica-
tion.
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Figure A.9: [InfiniBand] a–b Justitia isolating remote latency-sensitive READs from local
bandwidth-sensitive WRITEs. c–d Justitia isolating local latency-sensitive WRITEs from remote
bandwidth-sensitive READs.

We found that, in the absence of hardware virtual lanes, LITE does not perform well in isolating
latency-sensitive flow from the bandwidth-sensitive one (Figure A.10) – 122×worse 99th percentile
latency than Justitia. In terms of bandwidth-sensitive applications using different message sizes,
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Figure A.10: [InfiniBand] Performance isolation of a latency-sensitive flow running against a 1MB
background bandwidth-sensitive flow using Justitia and LITE.
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Figure A.11: [InfiniBand] Bandwidth allocations of two bandwidth-sensitive applications using
Justitia and LITE. LITE uses 100MB messages instead of 1GB due to its own limitation.
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Figure A.12: [InfiniBand] Sensitivity analysis of application weights.

LITE performs even worse than native InfiniBand (Figure A.11). Justitia outperforms LITE’s
software-level prioritization by being cognizant of the tradeoff between performance isolation and
high utilization.
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Figure A.13: [InfiniBand] Sensitive analysis of chunk sizes.

1.94 1.95 1.92 2.442.17 2.19 2.18

13.46

0

5

10

15

1000 10000 100000 500000

La
te

nc
y 

(u
s)

RefCount

Median 99th

Figure A.14: [InfiniBand] Sensitivity analysis of RefCount.

A.4 Sensitivity Analysis

Setting Applications Weights To evaluate how assigning different application weights (§2.4.3.1)
affects Justitia’s performance, we launch 4 bandwidth-sensitive applications each sending 1MB
message together with a latency-sensitive application, and we vary the weights of the bandwidth-
sensitive applications. Figure A.12 illustrates the impact of setting different application weights
with latency target set to 2 𝜇s. As the weight increases, the value of SafeUtil increases, and
thus more aggregate bandwidth share is obtained for bandwidth-sensitive applications. Higher
SafeUtil leads to worse latency isolation, but in these experiments the effect of weights on tail
latency performance is not huge. In fact, we do not find much latency performance degradation
as the weight increases, illustrating the effectiveness of Justitia mitigating head-of-line blocking
via its splitting mechanism. The cluster operator can choose weights based on the priority of the
applications in the cluster based on the Quality-of-Service inside the cluster (similar to deciding
bandwidth resources in a shared environment), or based on how much each application pays
to obtain the service. Additionally, if multi-tenant fairness is desired, one can achieve that by
modifying how credits are allocated in Justitia on a per-tenant basis. Justitia supports allocating
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tokens at multiple granularities if needed, which can be per-tenant, per-application, or per group of
connections within an application.

Setting Chunk Size When latency-sensitive applications are present, Justitia picks the smallest
chunk size that still provides a wide range of bandwidth in case SafeUtil is high (Figure 2.10).
Here we evaluate how setting the correct chunk size affects Justitia’s performance. We use the same
setting as the sensitivity analysis of application weights and set the weight to be 2. Figure A.13
illustrates the experiment results with different chunk sizes. Although a smaller chunk size provides
better latency isolation, it is not able to achieve SafeUtil and thus waste bandwidth resources. On
the other hand, too big of a chunk size does not provide enough latency isolation.

Setting RefCount To evaluate how sensitive the value RefCount (§2.4.3.2) is, we design an
experiment where initially we launch one latency-sensitive application to compete with a bandwidth-
sensitive application. Once the experiment starts, we add three additional bandwidth-sensitive
application, with a gap of 1 second between their arrival time. We measure the latency of latency-
sensitive application after it completes 10 million messages. Figure A.14 plots the results with
different RefCount values. It turns out that Justitia tracks the tail latency closely as long as
RefCount is not huge. In Justitia, we set the default value of RefCount =10000 to have some
memory of latency spikes but not longer enough to impact stable performance.

A.5 Discussion

A.5.1 Why not simply use hardware priority queues in the RNIC?

Mellanox NICs have priority queues, but as we mention in Chapter 2, the number of queues they
support is very limited (e.g., only 2 lossless queues in the RoCE NICs we test out), and we have
illustrated such limited number priority queues are insufficient to provide isolation in Figure 23.
In addition, the time needed to reconfigure and modify the mapping from applications’ QPs to
the priority queues is in the order of milliseconds. Last but not the least, it is sometimes also
desireable to provide isolation inside a priority level (e.g., bandwidth-sensitive applications and
latency-sensitive applications are both assigned with the same QoS level) where hardware priority
queues will not be sufficient. Thus, using the priority queues provided by existing hardware does
not solve the isolation problem that Justitia faces.
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A.5.2 Why use only 1 QP in most of the microbenchmark experiments?

We use a small number of QPs to show that the performance isolation issues can easily occur even
with a very small number of active connections. We also test with more number of QPs but the
results are placed in Appendix due to limit of space. In fact, adding more QPs exacerbates the
performance degradation (Figure 30 in the appendix).

A.5.3 How does Justitia handle the incast experiment?

Justitia leverages receiver-side updates to make sure the correct minimum rate guarantees are
updated correctly at each sender. Due to large latency spike in the case of a network incast, senders
will mostly like send via the minimum guaranteed rate (Rmin ) given the latency target will not
be met. We discussed receiver-side updates in Section 2.4.5 and illustrate Justitia complements
with existing congestion control and can further help reduce receiver-side engine congestion in
Section 2.6.5.

A.5.4 Does reference flow and receiver-side updates create additonal con-
gestion in a large scale deployment?

The reference flow sends small messages (10 Bytes every 20 𝜇𝑠) and only amount to a very small
Gbps number (1e6 / 20 * 10 / 1e9 * 8 = 0.004 Gbps), which consumes less than 0.1% of the total
link capacity even at nodes with only 10 Gbps link, and thus is not likely to generate any hot spot
in the network. When the server broadcasts the receiver-side update, the message is sent using
SEND and RECV with a message size of 16 Bytes. With even 1000 client machines this amounts
to around 16KB total message size, which is too small to create a potential congestion problem.

In the case of a large-scale latency-sensitive flow incast, if congestion indeed happens, DCQCN
will work together with Justitia since it is the major congestion control dealing with fabric conges-
tion. In this scenario, adding more latency-sensitive flows does not prevent Justitia guaranteeing
bandwidth share of bandwidth hungry applications.

In the current design of Justitia, the bandwidth-sensitive applications can be rate-limited due to
a coexisting latency-sensitive application which is launched at the same host but sends data to a
different destination. This is intended behavior to mitigate the anomalies caused by contention at
sender-side RNICs, which happens regardless of whether two competing applications are targeting
the same receiver. We defer a comprehensive fabric-level solution which involves multiple senders
and receives as our future work.
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A.5.5 How to ensure all cooperating SW uses the right protocols and protocol
versions?

To deploy Justitia, one only needs to install the Justitia Daemon code and a modified Mellanox
driver code on the host machine, and Justitia is compatible with all existing RDMA protocols,
including RDMA over Infiniband and RoCE. In datacenter deployments, cluster management tools
like Ansible can be used to ensure the appropriate code is deployed at each machine. Additionally,
it is straightforward to upgrade Justitia. Because each server in Justitia operates independently, it is
not necessary for the same version of Justitia to be deployed across the cluster. Justitia will operate
as long as servers are running some version of Justitia.

A.5.6 How can Justitia be implemented in hardware?

Without having a software layer to split the large RDMA operations before they arrive at the NIC,
one probably need to somehow control how the NIC issues PCIe reads. Hardware is often optimized
for performance, which in fact is why we are having such isolation issues, so simply decreasing
the size of each PCIe reads will definitely affect its maximum throughput performance. To bring
Justitia into the hardware design, similar to what we have done in the software layer, the hardware
need to recognize when splitting and pacing is needed to provide isolation, and when it should
process at maximum capacity for higher utilization.

A.5.7 Long-term value of Justitia

As RNICs keep evolving, its performance isolation issues may be mitigated in newer hardware
designs. The purpose of this work is to show that there exist such isolation issues in current
kernel-bypass networks and illustrate one working approach to mitigate the issue. Design ideas
presented in this work can inform hardware designers when developing future RNIC as well as
programmable NIC designs.
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APPENDIX B

Aequitas Appendix

B.1 Measuring RNL
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Figure B.1: Latency breakdown of a WRITE RPC. The RPC network latency (RNL) measures the
difference between the time when the first RPC packet arrives at the L4 layer and the time when
the last RPC packet is acknowledged.

RNL is the portion of RPC latency impacted by network overloads. Figure B.1 shows the life
of a Storage WRITE RPC; the discussion applies similarly to READ RPCs. A complete Storage
RPC operation consists of a request followed by a response. As Figure B.1 shows, it constitutes
a significant portion of overall RPC latency, especially when network bandwidth is constrained.
RNL is defined by 𝑡1 − 𝑡0 where 𝑡0 is the time when the first RPC packet arrives at the L4 transport
layer, e.g., TCP and 𝑡1 is the time when the last packet of the RPC is acknowledged at the transport.
We focus on the payload portion of the RPC as we observe that total data transmitted in a complete
RPC operation (a request followed by a response) is dominated by the side which contains the
actual payload of the RPC—the response of a READ RPC is much larger than the request (200:1 on
average in our clusters), and the request of a WRITE RPC is much larger than its response (400:1
on average).
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There are two main challenges in precisely measuring RNL in production stacks: (i) RPC
boundaries may not be known precisely at the transport layer, as is the case with Linux kernel
TCP, and (ii) RNL can still include delays unrelated to network overload, such as delays due to
insufficient CPU, interrupts, flow control or kernel scheduler. One approach is to measure RNL 𝑡0
and 𝑡1 at the sendmsg boundary. As Aequitas incorporates RPC size in the SLO, this works well
even if an RPC consists of multiple 𝑠𝑒𝑛𝑑𝑚𝑠𝑔 calls.

B.2 WFQ Delay Analysis

B.2.1 When Delay Occurs in WFQ

Delay occurs in a WFQ class iff (1) the total instantaneous input arrival rate on the link is greater
than the link capacity (i.e., in the presence of overload), and (2) the arrival rate of the class is greater
than the service rate of the class: ∑︁

𝑎𝑖 > 𝑟 𝑎𝑛𝑑 𝑎𝑖 > 𝑠𝑖 (B.1)

where 𝑎𝑖 ≥ 𝑠𝑖 ≥ 𝑚𝑖𝑛(𝑎𝑖, 𝑔𝑖). Further, note that when the total arrival rate is greater than the link
rate 𝑟, the total amount of service rate which WFQ can provide is fixed at 𝑟 by the definition of
work conservation: ∑︁

𝑠𝑖 = 𝑟, 𝑖 𝑓
∑︁

𝑎𝑖 > 𝑟 (B.2)

The expression for 𝑠𝑖 is not immediately given as one needs to consider both𝑄𝑜𝑆𝑖’s own guaranteed
rate 𝑔𝑖 as well as a share of unused rate from other QoS classes due to the work conserving nature
of WFQ.
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Figure B.2: Applying network calculus on WFQ with 2 QoS levels.

Thus, the value 𝑠𝑖 changes dynamically as the QoS-mix varies (e.g., when all the traffic from
some QoS class has been consumed). In other words, QoS-mix in a WFQ can affect the delay
profile of each QoS class. If the number of classes is 2, 𝑄𝑜𝑆ℎ and 𝑄𝑜𝑆𝑙 , we can show that delay
occurs on 𝑄𝑜𝑆𝑖 if the following condition holds true:∑︁

𝑎𝑖 > 𝑟 𝑎𝑛𝑑 𝑎𝑖 > 𝑔𝑖 (B.3)

We will show this for QoSℎ, and QoS𝑙 follows from symmetry. To prove this, we will show that
in the two QoS case, if 𝑎ℎ > 𝑠ℎ, then 𝑎ℎ > 𝑔ℎ. We use the following equations for the proof:

(1) Overload Condition: 𝑎ℎ + 𝑎𝑙 > 𝑟
(2) Work Conservation Condition: 𝑠ℎ + 𝑠𝑙 = 𝑟
(3) WFQ Condition: 𝑔ℎ + 𝑔𝑙 = 𝑟
(4) Guaranteed-bandwidth Condition: If 𝑎𝑖 ≥ 𝑔𝑖, then 𝑠𝑖 ≥ 𝑔𝑖
(5) Excess-bandwidth Condition: If 𝑠ℎ > 𝑔ℎ, then (𝑎ℎ > 𝑔ℎ) and (𝑎𝑙 < 𝑔𝑙)

Consider the two possible scenarios depending on whether the arrival rate on QoS𝑙 is below or
above its guaranteed share.
Case 1: 𝒂 𝒍 ≤ 𝒈𝒍 In this case, all of QoS𝑙 traffic gets instantaneously served, i.e. 𝑠𝑙 = 𝑎𝑙 . Above

equations give us: 𝑎ℎ > 𝑟 − 𝑎𝑙 > 𝑟 − 𝑔𝑙 = 𝑔ℎ.
Case 2: 𝒂 𝒍 ≥ 𝒈𝒍 In this case, QoS𝑙 at least gets its guaranteed rate, i.e., 𝑠𝑙 ≥ 𝑔𝑙 . However, since
there is no excess in QoSℎ (as 𝑎ℎ > 𝑠ℎ), 𝑠𝑙 = 𝑔𝑙 , therefore 𝑎ℎ > 𝑠ℎ = 𝑟 − 𝑠𝑙 = 𝑟 − 𝑔𝑙 = 𝑔ℎ.

The same proof applies to class 𝑙 due to symmetry.
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Figure B.3: Service curve changes as QoS-share of QoSℎ changes.

B.2.2 Derivation of Delay Equations in 2-QoS WFQ

We first demonstrate how we apply Network Calculus [58] to find closed-form equations for worst-
case delay in WFQ for the 2-QoS case.

Network Calculus
Similar to previous work [176], our analysis is based on Network Calculus. Network Calculus
furnishes a simple result: given an arrival cumulative curve as per the traffic arrival pattern and a
service curve defining how traffic is served in the system, then the maximum horizontal distance
between the arrival and the service curves gives the theoretical delay bound of the queuing system.

Toy Example
Consider a simple example with a single bottleneck with 2 QoS levels, QoSℎ and QoS𝑙 , under the
same traffic pattern described in §3.4.1 with a weight ratio of 4:1, guaranteed rate for QoSℎ is
80Gbps and is 20Gbps for QoS𝑙 . The switch has a processing rate of 100 Gbps. The total Traffic is
split into 50%/50% on QoSℎ/QoS𝑙 . Traffic arrives at a burst of 120Gbps for some time (>100Gbps),
and then stays idle to achieve an average of 80% load (=80Gbps). Since 50% of the traffic is on
QoSℎ with a burst load of 120%, the switch immediately processes all QoSℎ traffic incoming at a
rate of 60Gbps (as its lower than the guaranteed rate of 80Gbps), and the remaining 40 Gbps goes to
QoS𝑙 , resulting in QoS𝑙’s queue size growing at 20Gbps. Once all QoSℎ traffic has been processed,
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the link is now able to process QoS𝑙 outstanding traffic at 100Gbsp and QoS𝑙’s queue stops growing.
In other words, at this moment QoS𝑙 experiences the maximum delay at this moment – when all of
QoSℎ traffic has been processed. Figure B.2b summarizes the service curve for QoS𝑙 traffic, and
the maximum horizontal distance between these 2 curves gives the delay bound (shown as the red
bar in Figure B.2c), which is represented as a fraction of the data sending period (including the
burst and idle stage).

Closed-form Equations for 2-QoS case
With this explanation, we can start providing derivation of worst-case delay for QoSℎ, 𝐷𝑒𝑙𝑎𝑦ℎ in
Equation 3.1, under the model depicted in Figure 3.7. The central idea is to determine the different
service curves as QoS-mix changes, a and formulate equations for the delay bound based on the
maximum horizontal distance between the arrival and the service curve.

The following notation in addition to Table 3.1 will be frequently used in the derivation.

𝑎ℎ = 𝜌𝑟𝑥

𝑎𝑙 = 𝜌𝑟 (1 − 𝑥)
𝑔ℎ =

𝜙

𝜙 + 1𝑟

𝑔𝑙 =
1

𝜙 + 1𝑟

where 𝑥 is the QoSℎ-share, and the ratio of QoS weights for QoSℎ: QoS𝑙 is 𝜙 : 1.
As the value of QoSℎ-share (𝑥 in the equations) varies from 0 to 1, we enter different domains

with different service curves and we explain the cases below.

Case (1) When QoSℎ-share just starts to increase from 0, QoSℎ’s instantaneous input arrival rate
can be immediately processed by its minimum guaranteed rate, and thus, QoSℎ experiences no
delay, i.e., 𝐷𝑒𝑙𝑎𝑦ℎ (𝑥) = 0. In other words, the arrival and service curves overlap under this case,
𝑠ℎ = 𝑎ℎ (as depicted in Figure B.3a). The following conditions characterize this domain:

𝑎ℎ ≤ 𝑔ℎ
=⇒ 𝑥 ≤ 𝜙

𝜙 + 1
1

𝜌

Case (2) As QoSℎ-share continues to increase, QoSℎ starts to experience delay as well but it still
finishes earlier than QoS𝑙 . Therefore, priority inversion will not happen yet and we are still in the
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admissible region. This domain implies: 
𝑎ℎ > 𝑔ℎ

𝑎𝑙 > 𝑔𝑙

𝜇𝑥

𝑔ℎ
<
𝜇(1 − 𝑥)
𝑔𝑙

=⇒ 𝜙

𝜙 + 1
1

𝜌
< 𝑥 ≤ 𝜙

𝜙 + 1

We draw the arrival and service curve of QoSℎ for Case (2) in Figure B.3b. The delay bound
can be achieved by taking the maximum horizontal distance between the two curves, which is the
difference between 𝑡1 and 𝑡2 in the figure. In this case, 𝑡1 is as per the model in Figure 3.7, and 𝑡2
is calculated as the time it takes to consume QoSℎ’s incoming traffic with 𝑠ℎ = 𝑔ℎ.

𝑡1 =
𝜇

𝜌

𝑡2 =
𝜇𝑟𝑥

𝑔ℎ
= 𝜇𝑥

𝜙 + 1
𝜙

𝐷𝑒𝑙𝑎𝑦ℎ (𝑥) = 𝑡2 − 𝑡1 = 𝜇(𝜙 + 1
𝜙

𝑥 − 1

𝜌
)

Case (3) QoSℎ delay keeps growing as QoSℎ-share increases, and eventually QoSℎ finishes pro-
cessing all the incoming traffic later than QoS𝑙 , causing priority inversion. To solve for the domain
in this case, we have: 

𝑎ℎ > 𝑔ℎ

𝑎𝑙 > 𝑔𝑙

𝜇𝑥

𝑔ℎ
>=

𝜇(1 − 𝑥)
𝑔𝑙

=⇒ 𝜙

𝜙 + 1 < 𝑥 ≤ 1 − 1

𝜙 + 1
1

𝜌

The arrival and service curve of QoSℎ in Case (3) is depicted in Figure B.3c. Similar to the last case,
the delay is calculated by the difference of 𝑡1 and 𝑡2. By definition, 𝑡2 in this case is the time QoS𝑙
finishes processing its input traffic using 𝑔𝑙 in the current period. In the interval [0, 𝑡2], 𝑠ℎ = 𝑔ℎ.
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One can find 𝑡1 by matching the 𝑦-value of the arrival and the service curves in Figure B.3c as:

𝑎ℎ𝑡1 = 𝑔ℎ𝑡2

𝑡2 =
𝜇𝑟 (1 − 𝑥)

𝑔𝑙
= 𝜇(1 − 𝑥) (𝜙 + 1)

𝑡1 =
𝑔ℎ𝑡2

𝑎ℎ
=
𝜇(1 − 𝑥)𝜙

𝜌𝑥

𝐷𝑒𝑙𝑎𝑦ℎ (𝑥) = 𝑡2 − 𝑡1 = 𝜇(1 − 𝑥) (𝜙 + 1 − 𝜙

𝜌 𝑥
)

Case (4) As QoS𝑙-share keeps decreasing with increasing 𝑥, QoS𝑙 eventually experiences no delay,
however QoSℎ continues to experience delay. This is because we are in the overload situation where
𝜌 > 1, there exists at least one QoS level that must experience delay. This implies:

𝑎𝑙 < 𝑔𝑙

=⇒ 𝑥 > 1 − 1

𝜙 + 1
1

𝜌

Figure B.3d describes the arrival and service curve of QoSℎ in this case. 𝑡2 marks the time when
QoS𝑙 finishes servicing its traffic. 𝑡1 can be calculated in a similar way as Case (3) by matching the
𝑦-values:

𝑡2 =
𝜇

𝜌

𝑡1 =
(𝑟 − 𝑎𝑙)𝑡2

𝑎ℎ
=
𝜇

𝜌2

1 − 𝜌(1 − 𝑥)
𝑥

𝐷𝑒𝑙𝑎𝑦ℎ (𝑥) = 𝜇( 1
𝜌
− 1

𝜌2
) 1
𝑥

Case (5) As QoSℎ-share keeps increasing, its arriving rate eventually exceeds the line rate. This
creates the final arrival and service curve profile as shown in Figure B.3e. The domain in this case
is represented by:

𝑎ℎ > 𝑟

=⇒ 𝑥 >
1

𝜌

Note that 𝑡1 in Figure B.3e is when QoS𝑙 finishes. There are multiple ways to obtain the delay
bound in this case. A simple one is to recognize that 𝑡2 is the time it takes to consume all the

137



incoming traffic. To solve for the delay bound, we have:

𝑡1 =
𝜇

𝜌

𝑡2 =
𝜇𝑟

𝑟
= 𝜇

𝐷𝑒𝑙𝑎𝑦ℎ (𝑥) = 𝑡2 − 𝑡1 = 𝜇(1 − 1

𝜌
)

In summary, the five cases above have the following delay characteristics:

(1) QoSℎ has no delay but QoS𝑙 has delay
(2) both have delay but QoSℎ finishes earlier
(3) both have delay but QoS𝑙 finishes earlier
(4) QoSℎ has delay but QoS𝑙 does not
(5) QoSℎ’s arrival rate is above the link rate

By combining the above 5 cases, QoSℎ worst-case delay (𝐷𝑒𝑙𝑎𝑦ℎ (𝑥)) (Equation 3.1) is obtained
as: 

0, 𝑥 ≤ 𝜙

𝜙 + 1
1

𝜌

𝜇( 𝜙 + 1
𝜙

𝑥 − 1

𝜌
), 𝜙

𝜙 + 1
1

𝜌
< 𝑥 ≤ 𝜙

𝜙 + 1
𝜇(1 − 𝑥) (𝜙 + 1 − 𝜙

𝜌 𝑥
), 𝜙

𝜙 + 1 < 𝑥 ≤ min{1 − 1

𝜙 + 1
1

𝜌
,
1

𝜌
}

𝜇( 1
𝜌
− 1

𝜌2
) 1
𝑥
, min{1 − 1

𝜙 + 1
1

𝜌
,
1

𝜌
} < 𝑥 ≤ 1

𝜌

𝜇(1 − 1

𝜌
), 𝑥 > max{ 𝜙

𝜙 + 1 ,
1

𝜌
}

Note that depending on the value of 𝜌 and 𝜙, it is possible that some of the domains are empty,
however the equations remain valid with different domain boundaries.

For example, when 𝜙 = 4, 𝜌 = 2 and 𝜇 = 0.8, QoSℎ worst-case delay becomes:

𝐷𝑒𝑙𝑎𝑦ℎ (𝑥) =

0, 𝑥 ≤ 0.4

𝑥 − 0.4, 0.4 < 𝑥 ≤ 0.8

0.4, 𝑥 > 0.8

Following a similar analysis, the closed-form worst-case delay for QoS𝑙 (𝐷𝑒𝑙𝑎𝑦𝑙 (𝑥)) is given
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Figure B.4: Same experiment as in Figure 3.17 with smaller 𝛽 value (𝛽 = 0.0015).
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𝜇(1 − 1

𝜌
), 𝑥 ≤ min{1 − 1

𝜌
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𝜙

𝜙 + 1 }

𝜇( 1
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− 1
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) 1

(1 − 𝑥) , 1 − 1
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𝜌
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𝜙 + 1
𝜇((𝜙 + 1) (1 − 𝑥) − 1

𝜌
), 𝜙

𝜙 + 1 < 𝑥 ≤ 1 − 1

𝜙 + 1
1

𝜌

0, 𝑥 > 1 − 1

𝜙 + 1
1

𝜌

(B.4)

B.3 Sensitivity Analysis

𝛼 and 𝛽 are key parameters in that they posit a tradeoff between SLO-compliance and stabil-
ity in achieved shares. Under adversarial patterns, Aequitas favors SLO-compliance over work-
conservation by the virtue of being an admission-control system.

We repeat the experiment in §3.6.5 with a lower 𝛽 value of 0.0015 per MTU (Algorithm 2)
compared to the original setting of 0.01. A lower 𝛽 value implies a smaller decrease in 𝑝𝑎𝑑𝑚𝑖𝑡

whenever a latency miss is detected. While this provides excellent stability around fair-shares, it is
less suited towards SLO-compliance. We show the equivalent of Figure 3.17 with smaller 𝛽 value
in Figure B.4, and the equivalent of Figure 3.18 in Figure B.5. The 1𝑠𝑡-𝑝 𝑝𝑎𝑑𝑚𝑖𝑡 for RPC Channel
A in Figure B.5 is 0.96, an improvement over 0.82 in Figure 3.18.

The parameter 𝛼 has a similar tradeoff, a lower value is averse to increasing admit probability
and favors SLO-compliance, whereas a higher value can provide better stability but with worse
SLO-compliance.
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Figure B.5: Same experiment as in Figure 3.18 with smaller 𝛽 value (𝛽 = 0.0015).

B.4 Artifact Appendix

We provide a brief appendix of our artifact for interested readers who want to try out Aequitas. You
can find more information about our artifact evaluation on the artifact-eval branch of our GitHub
repository (https://github.com/SymbioticLab/Aequitas).

B.4.1 Abstract

This artifact is designed to reproduce major results in this work using the simulator we wrote. It
contains the source code of the simulator and the scripts used to launch experiments that reproduce
our evaluation results.

B.4.2 Scope

The artifact is used to validate major evaluation results including theoretical 2-QoS worst-case
delay analysis, SLO compliance, QoS-mix convergence, and fairness aspects of Aequitas. Readers
are also encouraged to use the simulator or build on top of it to study other research problems in
datacenter networking.

B.4.3 Contents

The artifact contains the following items:
(1) An README describing the artifact including how to build the simulator code, how to

launch the selected experiments, and what expected results are after running those experiments.
(2) Source code of the simulator, which is used to simulate Aequitas and other systems in related

work.
(3) Scripts to launch all the provided experiments.
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The experiments include (a) a theoretical verification of the 2-QoS worst case delay, (b) eval-
uating SLO-compliance for both 2-QoS and 3-QoS cases, (c) evaluating QoS-mix convergence in
a 3-QoS setting, and (d) evaluating fairness aspect in the same setting as the one we have in the
chapter. We also includes the configuration files for all the systems in our related work comparison.
Users can try out the simulator with their own RPC size distribution.

B.4.4 Hosting

To obtain the artifact, go to our GitHub repository at https://github.com/SymbioticLab/Aequitas
and switch to the artifact-eval branch with the latest commit.

B.4.5 Requirements

The artifact requires a build environment to compile the simulator, which is written in C++. We
developed the simulator in Linux. The code should work as long as it can be compiled correctly
with automake. The compilation is very straightforward.
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APPENDIX C

Vulcan Appendix

C.1 Additional Evaluation Results

C.1.1 Datasets and Query Configuration

We describe below the details of the datasets and query configuration we used in Vulvan.

Datasets:
The traffic monitoring queries use videos captured by traffic cameras among different metropoli-

tan areas in Bellevue and Washington D.C. The videos are encoded in MP4 format (1280x720p,
30fps, and 120 seconds long) and randomly sampled from two-hour long videos among 24 days.

For autonomous driving perception queries, we use LiDAR sensor data from nuScenes [45],
a large-scale autonomous driving dataset. The dataset features 1000 20-second driving scenes
collected over months, in Boston and Singapore encompassing a diverse range of challenging
driving situations.

Automatic speech recognition queries use the VOiCES dataset [186], an English speech audio
dataset by male and female speakers. The dataset contains 3903 audio files (total 15 hours
long) containing different room settings, simulated head movement, and various background noise
patterns.

Configuration Knobs. Besides the variation of ML models described in §4.6.1, our queries in
Evaluation configure the following additional configuration knobs.
• Video monitoring queries configure input frame sampling rate (1/2, 1/3, 1/4, 1/5, 1/6) and frame

resizing factor (0.6, 0.7, 0.8, 0.9, 1) for frame resolution.
• Autonomous driving queris configure the ground removal factor1 and voxel size, each with 5

configuration values (0.1, 0.2, 0.3, 0.4, 0.5).
• Speech recognition queires configure audio sampling rate (8k, 10k, 12k, 14k, 16k) and frequency

mask width (500, 1000, 2000, 3000, 4000) of the noise reduction module.

1corresponds to the maximum distance between a ground point and the estimated 2D ground plane.

142



�

	�
�

	�
	

	�



�
#"
���
�!
��
��
 
�

��
"#
 
��
�*
��
� 	���


���	

�� ��	

	

�(��&$%�'�
����"�%"# 

����"�%"# �
����)���!

�&���!

(a) Profiling Cost

���(%��)
���
��

���
���
���
	��

�
��

(%
��

)

������	 ������	
�


��
���
���
���

	���
	
��

��
'�

"�
)�

�!
&�

������� ������


	�
�

	�
	

	�



�
�&

#(
%�

�
��

#%
!

� 
�*

��
�

	 	
���


��	


���

����
����


���

���� 	���

�$'�!� 
����#�'#%!

����#�'#%!�
��  )���"

�( ��"

(b) Performance and Resource Consumption

Figure C.1: End-to-end performance when exploring the best placement and query configuration
for autonomous driving queries.

C.1.2 End-to-End Improvement

Figure C.1 and Figure C.2 shows the comparison between Vulcan and other baselines in the end-
to-end performance of autonomous driving and speech recognition queries. The same conclusion
can drawn as mentioned in §4.6.2.

C.1.3 Selecting Better Placement

Figure C.3 and Figure C.4 records the performance and resource consumption of autonomous
driving and speech recognition queries, where PN, PC, and NC use the optimal query plan achieved
by exhaustive search. Similar to §4.6.4, Vulcan always achieves the best placement choice, outper-
forming other baselines in query performance and resource consumption.
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(b) Performance and Resource Consumption

Figure C.2: End-to-end performance when exploring the best placement and query configuration
for speech recognition queries.
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Figure C.3: Comparing Vulcan with different placement strategies on serving AD perception
queries.
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Figure C.4: Comparing Vulcan with different placement strategies on serving ASR queries.
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